• 締切済み

ノルムの定義のより一般への拡張は?

いつもお世話になっております。 R線形空間Vに対し,下記を満たすf:V→Rなる写像fが採れる時, そのfをノルムと言い,Rをfによるノルム空間と言う(Rは実数体)。 (i) f(x)≧0;f(x)=0⇔x=0 (ii) f(rx)=|r|f(x) (r∈R) (iii) f(x+y)=f(x)+f(y) がノルム空間の定義だと思います。 これをより一般に定義拡張したいのですがその場合 全順序体F上の線形空間Vに対し,下記を満たすh:V→O(Oは全順序環)及びk:F×O→O及びd:F→Fなる写 像h,k,dが採れる時, そのhを内積と言い,Vをh,k,dによる内積空間と言う。 x,y∈V,f∈F (i) P(h(x),0_O)=true ;h(x)=0_O⇔x=0_V (PはOの順序関係、0_O,0_Vは夫々O,Vの零元) (ii) h(fx)=k(d(f),h(x)) (d(f)=f (Q(f,0_F)=trueの時、d(f)=-f (Q(0_F,f)=trueの時)) (iii) h(x+y)=h(x)+h(y) で正しいでしょうか? また、これから更に定義の拡張は可能でしょうか? 宜しくお願い致します。

みんなの回答

noname#50894
noname#50894
回答No.3

理解するためには、専門書を一冊読み通す必要があります。 岩波書店から、 ・超函数の理論  原書第3版 ・L.シュワルツ ・岩村 聯,石垣 春夫,鈴木 文夫 訳 が出ていたのですが、絶版らしいです。

noname#50894
noname#50894
回答No.2

書き込みが多くて下に下がるのが早いですね。 >これを使ってどのように定義出来るのでしょうか? http://ja.wikipedia.org/wiki/%E8%B6%85%E9%96%A2%E6%95%B0 に超関数の説明があります。 真ん中あたりの“厳密な定義”に載っています。

AkiTamura
質問者

お礼

> ?http://ja.wikipedia.org/wiki/%E8%B6%85%E9%96%A2%E6%95%B0? > に超関数の説明があります。 > 真ん中あたりの“厳密な定義”に載っています。 うーん、すいません。よく分かりませんでした。 ご解説お願い致します。m(_ _)m

noname#50894
noname#50894
回答No.1

線形空間にノルムを定義したいという事は、位相構造を入れたいと言うことですね。 それが見えませんね。 付値の概念を入れることにより、このことは可能かも知れません。 しかし公理上矛盾がなくても、利用価値が見えません。 それよりも、あえてノルムを導入しなくても、線形空間に位相構造を導入する “位相線形空間”の概念の方が、利用価値としては大きいと思います。 例えば、超関数を数学的に厳密に定義する手段としてもこの概念は用いられますが。

AkiTamura
質問者

お礼

有難うございます。 >“位相線形空間”の概念の方が、利用価値としては大きいと思います。 これを使ってどのように定義出来るのでしょうか? 是非ご教示ください。m(_ _)m

関連するQ&A

  • ノルム空間

    (X,||・||)をノルム空間とする。 この時x,y∈Xに対してd(x,y)=|x-y|と定義すれば、 (X,d)は距離空間となることを示せ。 Xがノルム空間であることを利用して、 対称性と常に0以上になるということは示したのですが、 三角不等式の証明が上手く出来ません。 どのように示せばいいのでしょうか? x,y,z∈Xとして、 |x-z|≦|x-y|+|y-z|を示したいのですが、 |x-z|≦|x|+|z|≦|x-y|+|y-z|≦||x|+|y|+|y|+|z| が成立するかどうかがいまいち曖昧なのです。 よろしくお願いします。

  • 制御工学における∞ノルムとユークリッドノルムの違い

    現在制御工学について勉強している学生ですが、よく分からない事があるので質問をさせて頂きます。 「下図のような直結フィードバックシステムで、以下の3つの条件を満たすコントローラの比例ゲインKの最小値を求めよ」という問題について考えていまして、その3つの条件とは (1)フィードバックシステムが内部安定であること (2)入力が単位ステップで外乱がない(d=0)の時|e(∞)|<0.1 となる(e:偏差) (3)入力r=0として、||d||2<1のような全てのd(t)に対して||y||∞<0.1となる (※||d||2はdのユークリッドノルム、||y||∞はyの∞ノルムです) で、ブロック線図と各要素の伝達関数は          ↓d r---o--C(s)--o--P(s)----y    |            |    --------F(s)----- P(s)=1/(10s+1), C(s)=K, F(s)=1 です。 ここで質問です。 条件(3)で、出力yの∞ノルムは|y|の最大ゲインという事は理解しているのですが、外乱dのユークリッドノルムがこの場合何を意味しているのかが今一つ分かりません。 これも、外乱の最大ゲインの事なのでしょうか?もしそうだとすれば、何故出力の方は∞ノルムで表し、外乱はユークリッドノルムで表すのかが分かりません。 どなたか、教えて頂けませんでしょうか?

  • x1,x2,…,xn:正規直交Σ[i=1..n]|<x,xi>|^2≦∥x∥^2且つx-Σ[i=1..n]<x,xi>xi⊥xj (∀j)

    こんにちは。 [定理]x1,x2,…,xnが内積空間Xでの正規直交集合とする。 x∈Xの時, Σ[i=1..n]|<x,xi>|^2≦∥x∥^2 且つ x-Σ[i=1..n]<x,xi>xi⊥xj (∀j) はどのようして示せばいいのか分かりません。 何卒,ご教示ください。 尚, 内積の定義は複素線形空間Vの任意の要素x,yに対して複素数<x,y>が定まり,次の4条 件を満たす時<x,y>をxとyの内積といい,内積が定義されている空間Vを内積空間と言 う。 (i) <x,x>≧0; <x,x>=0⇔x=0 (ii) <x,y>=<y,x>~ (~はバーを表す) (iii) <x+y,z>=<x,z>+<y,z> (iv) <αx,y>=α<x,y> ノルムの定義はVを線形空間とする。Vの任意の要素xに対して,次の条件を満たすような実数∥x∥がある時,∥x∥をxのノルムという。 (i) ∥x∥≧0;また∥x∥=0⇔x=0 (ii) ∥αx∥=|α|∥x∥ (iii) ∥x+y∥≦∥x∥+∥y∥

  • ヒルベルト空間について

    ∀x∈H:ヒルベルト空間について  sup{<x,y>| ∥y∥≦1 y∈H}=∥x∥ を示したいのですが。 (但し、<、> はHでの内積、∥・∥は内積から入るノルムとします。) ユークリッド空間ならば、yはxと方向が同じで長さが1のベクトルだということはイメージできるのですが。ヒルベルト空間だとうまく証明できません。よろしくお願いします。

  • 線形変換の定義について

    線形変換の定義について 線形変換の定義 [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 [2] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a∈K について常に f(x+y) = f(x) + f(y), f(ax) = a f(x) が成り立つもの。 [3] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K について a+b=1 のとき f(ax + by) = a f(x) + b f(y), f(ax) = a f(x) が成り立つもの。 がすべて同値であることを示したいのですが、どのようにすればよいでしょうか?

  • V:有限次元内積空間,∀f∈Dual(V),∃1y∈V such that f(x)=<x,y> (∀x∈V)

    宜しくお願い致します。 [問]VとDual(V)をそれぞれ有限次元内積空間とVの双対空間とする。 ∀f∈Dual(V),∃1y∈V such that f(x)=<x,y> (∀x∈V) という問題が証明できません。 Dual(V)はvHom(V,C):={f;f:V→C,fはベクトル空間準同型}(Cは複素数体を表す) の事です。 fがベクトル空間準同型とは∀v,w∈V,∀c∈C,f(v+w)=f(v)+f(w)∧f(cv)=cf(v)と満たす線形写像の事です。 内積の定義は複素線形空間Vの任意の要素x,yに対して複素数<x,y>が定まり,次の4条 件を満たす時<x,y>をxとyの内積といい,内積が定義されている空間Vを内積空間と言 う。 (i) <x,x>≧0; <x,x>=0⇔x=0 (ii) <x,y>=<y,x>~ (~はバーを表す) (iii) <x+y,z>=<x,z>+<y,z> (iv) <αx,y>=α<x,y> です。 この命題を満たすyとして何を採れば宜しいのでしょうか?

  • 線形変換の定義

    線形変換の定義 前回の質問で線形変換とアフィン変換について質問させて頂きました。 前回の質問内容:http://okwave.jp/qa/q5973471.html 線形変換とアフィン変換については理解する事が出来ました。 ご回答下さった方本当にありがとうございます。 線形変換の定義を幾つか示して頂いたのですが、 線型変換の定義: [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 線型変換の定義: [1’] [1']?体 K 上のベクトル空間 V 上の変換 f で、?x,y∈V, a∈K について常に?f(x+y) = f(x) + f(y),? f(ax) = a f(x) が成り立つもの。 線形変換の定義:[1''] ?体 K 上のベクトル空間 V 上の変換 f で、?x,y∈V, a,b∈K について a+b=1 のとき?f(ax + by) = a f(x) + b f(y),? f(ax) = a f(x) が成り立つもの。 定義[1] ⇔ [1'] ⇔ [1''] が同値であることはどのように示せば良いのでしょうか? また、定義[1'']におけるa+b=1とは具体的に何を示しているのでしょうか? ご回答よろしくお願い致します。

  • 線形変換の定義 証明

    線形変換の定義 証明 以前ご回答頂き理解したつもりだったのですが・・・ 実際に自分で証明を試みましたが出来ませんでした。 理解出来ていなかったので再々度質問させて頂きます。 重複質問で申し訳ないですm(_ _)m 線形変換の定義 [1] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K, について常に f(ax+by) = a f(x) + b f(y) が成り立つもの。 [2] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a∈K について常に f(x+y) = f(x) + f(y), f(ax) = a f(x) が成り立つもの。 [3] 体 K 上のベクトル空間 V 上の変換 f で、 x,y∈V, a,b∈K について a+b=1 のとき f(ax + by) = a f(x) + b f(y), f(ax) = a f(x) が成り立つもの。 *****以下質問内容***** [1]と[3]が同値であることの証明は理解できたのですが、 [1]と[2]が同値であることを証明できません。 [1]と[2]が同値であることの証明 [1]の定義に従い、[2]を示す。 ・x,y∈V,a,b∈Kにおいてa=b=1∈Kとおくと  x,y∈V,1∈K→f(ax+by)=f(1*x+1*y)=1*f(x)+1*f(y)=f(x)+f(y)=f(x+y) ・x,y∈V,a,b∈Kにおいてy=0∈V,b=0∈Kとおくと  x,0∈V,a,0∈K→f(ax+by)=f(ax+0*0)=f(ax)+0*f(0)=f(ax)=af(x) [2]の定義に従い、[1]を示す。 ・x,y∈V,a∈Kにおいて  f(x+y)がf(ax+by)=af(x)+bf(y)となる事が示せません・・・  そもそも、a∈Kでbはどこからでてくるのでしょうか? [1]→[2],[2]→[1]であるなら、[1]と[2]は同値であると示せると 思うのですが、[2]→[1]はどのようにすれば示せるのでしょうか? お手数ですが、ご回答よろしくお願い致します。

  • 半ノルム族によって誘導される位相について

    多様体V上の連続関数全体F(V)の位相に関して、 任意のコンパクト集合Lに対して、 P_L(f) = max |f(x)| ※xはL上を走る P_L(f) は、半ノルムとなり、F(V)にこれらの半ノルム族に誘導される位相が入るらしいです。 半ノルム族に誘導される位相とは、具体的に、開集合はどのように定義されるのですか。 Vがコンパクトであれば、通常のMAXノルムというやつですが、コンパクトでない一般的でない場合の位相の入れ方に関する質問です。 おそらく、ブルバキの位相に載っているかと思うのですが、当方、社会人のため、見ることができません。定義の問題なので、どなたかお願いします。

  • 自己随伴写像の表現行列が共役転置になる命題が示せません

    宜しくお願い致します。 [命題] Vをn次元内積空間,f∈L(V):={f;線形写像f:V→V},β:={x_1,x_2,…,x_n}をVの正規直交基底 とする。 内積<f(x),y>=<x,g(y)>(∀x,y∈V)の時,f=g(即ち,gはfの自己随伴写像)ならば (a_ij)=(a~_ji) ((a_ij)はfのβにおける表現行列,(a~_ji)は(a_ij)の共役転置) となる事を示せ。 という問題に難儀しています。 題意よりf(x_j)=Σ[i=1..n]a_ijx_iと書け、 内積の定義は複素線形空間Vの任意の要素x,yに対して複素数<x,y>が定まり,次の4条 件を満たす時<x,y>をxとyの内積といい,内積が定義されている空間Vを内積空間と言 う。 (i) <x,x>≧0; <x,x>=0⇔x=0 (ii) <x,y>=<y,x>~ (~はバーを表す) (iii) <x+y,z>=<x,z>+<y,z> (iv) <αx,y>=α<x,y> から先に進めません。この命題はどのようにして証明すればいいのでしょうか?