- 締切済み
線積分のパラメータ表示
こんばんは。 いつもお世話になっています。 今、ベクトルの線積分の問題が分からなくて困っています。 問題は、 ベクトル場A=2yi+xj+sin^2zkを曲線C(P(1,0,0)を始点、Q(0,1,π/2)を終点とする線分)に沿って線積分せよ。 というものです。 教科書に解き方が載っているのですが、まず 線分Cの方程式は(1-t)i+tj+π/2tk (0≦t≦1)なので・・とあり、なぜそうなるのか分かりません。 なぜパラメータ表示したときのxが1-tなのでしょうか。 どなたか回答お願いします;;
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- kabaokaba
- ベストアンサー率51% (724/1416)
回答No.1
「表記方法」を説明してほしかった・・・ あと「括弧」を適切に使って誤解の表記をしましょう. iが(1,0,0),jが(0,1,0),kが(0,0,1)ですね 空間の直線は高校で習いましたね. 方向ベクトルと一点で表わすのでした. 今回の方向ベクトルはPからQへ向かうので (-1,1,π/2)です.これは分かりますか? 始点として,P(1,0,0)をとるので 直線はtをパラメータとして (1,0,0)+t(-1,1,π/2)=(1-t,t,(π/2)t) これがPからQまでの線分を表わすのは0≦t≦1のとき. i,j,kの表記すれば (1-t)i+tj+π/2tk