• ベストアンサー

チコノフの定理の適用について

以下の問題がわかりません。 Aを開区間(-a,a)で連続な単調増加関数の集合とします。 Aに属する任意の関数をfとすると、fは以下の条件を満たします。 1、f(0)=0 2、0≦x<aのとき、f(x)≦x/1-x 3、-a<x<0のとき、f(x)≧x/1+x このとき、{f_i}をAの任意のネットとすると、上の条件より、{f_i(x)}は各xについて有界です。 ここで、 『チコノフの定理より、有界な関数fに各点収束する部分ネット{f_i}が存在する。』 とあるのですが、どこでどのようにチコノフの定理が適用されているのかがわかりません… どなたか教えてください。よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.2

直積集合 [0,1] × [0, 1] の元 (a_1, a_2) は 集合 {1, 2} から [0, 1]への写像 a : {1, 2} -> [0, 1] と考えられますね。 同じく、直積集合 [0, 1] × [0, 1] × [0, 1] の元 (b_1, b_2, b_3) は集合 {1, 2, 3} から [0, 1] への写像 b : {1, 2} -> [0, 1] と考えられますね。 どんどん直積の数を増やしていって、「(-a, a) の区間に含まれる実数個」だけ直積を考えれば Π_{x ∈ (-a, a)} [0, 1] の元 (...., c_x, ... ) は集合 (-a, a) から [0, 1] への写像 c : (-a, a) -> [0, 1] と考えられますね。 という感じ。 直積集合に標準的に直積位相を入れれば、それが写像で言うところの各点収束という意味になるはず。

ayako0101
質問者

お礼

アドバイスありがとうございました。

ayako0101
質問者

補足

直積と同一視できるという点についてはわかりました。わかりやすく説明していただき、ありがとうございます。 今度は直積集合に標準的に直積位相を入れると、各点収束になるというのがいまいち理解できないのですが、 直積集合の各[0,1]×[0,1]×…×[0,1]×…の元(c_1,c_2,…,c_n…)を考えると、これが(-a,a)から[0,1]への写像f;(-a,a)->[0,1]と同一視できますが、各[0,1]ごとにc_jはある値Cへ収束するので、ネット{f_j}は各点である関数fに収束し、これは写像で言うところの各点収束に相当する、という意味でしょうか??

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (8)

  • mikaemi
  • ベストアンサー率50% (33/65)
回答No.9

あと、気になったのは、わたしに対する返答は、「この回答への補足」でいいでしょうが、そのほかの人への返答は、「この回答へのお礼」にしたほうがいいんじゃないでしょうか?どうでもいいといえば、どうでもいいですけど(笑)

ayako0101
質問者

お礼

理解できました。ありがとうございました。 補足としたのは、できれば続きの回答がいただければ、と思ったからです。

全文を見る
すると、全ての回答が全文表示されます。
  • mikaemi
  • ベストアンサー率50% (33/65)
回答No.8

あはは。補足は不要だったですね。「{f_i(x)}が各xについて有界」だと理解できているなら、-a < x < 0 なる x についてはf_i(x)∈ [x/(a+x), 0]、x = 0 については f_i(x)∈[0, 0] 、0 < x < a なる x についてはf_i(x)∈[0, x/(a-x)]となることはわかっているはずですものね^^; 失礼しました。

全文を見る
すると、全ての回答が全文表示されます。
  • mikaemi
  • ベストアンサー率50% (33/65)
回答No.7

えーっと、補足: [αx, βx] として、-a < x < 0 なる x については [x/(a+x), 0]、x = 0 については [0, 0] (一点になることが気持ち悪ければ、[-1, 1] でもなんでもいい(笑))、0 < x < a なる x については[0, x/(a-x)]であると思ってもいいです。条件1,2,3 から、そのように言えるので。

全文を見る
すると、全ての回答が全文表示されます。
  • mikaemi
  • ベストアンサー率50% (33/65)
回答No.6

あぁ。。。積位相の入り方がわからないのかな?どんな位相の教科書にも載ってると思いますけど^^ 無限個の位相空間Xiがあったとき、ΠXiの位相というのは、任意有限個(この有限個ってところが重要)のXi1, ..., Xin を取って、それらの任意の開集合Ui1, ..., Uin を考えます。i1,...,in以外の添え字を持つXiについてはUi=Xiとします。ΠXiの近傍系をΠUiの形のもの全部として、この近傍系から誘導される位相が、チコノフの定理で考えている積位相です。※選ぶの一個でもいいです。結局、そういうものから導入される位相は、任意有限個としたものから導入した位相と一致するので。 それで、問題文にあてはめると、fの近傍系として、x0∈(-a,a)を一つ取ったとき、任意の正数ε>0に対して、開区間(f(x0)-ε, f(x0)+ε)=Ux0を考えます。x0以外のxについては、実数R全体(-∞, +∞)=Uxととってもなんでもいいです。そうすると、fが{f_i}に収束しているのと、あるnから先の添え字jについて、f_j がΠxUxに含まれるということは同じですね。x0 について考えれば、f_j(x0)∈(f(x0)-ε, f(x0)+ε)、すなわち、{f_j(x0)}はf(x0)に収束してます(各点収束)。 あとは、しっかり「位相空間」のテキストを読んで理解してください。 以下の本のいずれかをお薦めします。(松坂さん以外は、絶版かもしれませんが) ・森田紀一著『位相空間論』岩波全書 岩波書店 ・松坂和夫著『 集合・位相入門』岩波書店 ・ケリー著 児玉之宏訳『位相空間論』数学叢書 吉岡書店

全文を見る
すると、全ての回答が全文表示されます。
  • mikaemi
  • ベストアンサー率50% (33/65)
回答No.5

失礼^^ 「各店」じゃなくて、もちろん「各点」です(笑)

全文を見る
すると、全ての回答が全文表示されます。
  • mikaemi
  • ベストアンサー率50% (33/65)
回答No.4

「・・有界な関数fに各店収束・・」というのはおかしいですね。 たとえば、f(0)=0、f(x)=x/(a-x) [0<x<a]、f(x)=x/(a+x) [-a<x<0] と f を定義して、{f_i}のすべての要素が f に等しいとすると、もちろん、{f_i}のどんな部分ネットも f に収束しますが、f は有限であっても有界ではありません。lim x->a f(x) = +∞ ですよね。 で、『チコノフの定理より、有限な関数fに各点収束する部分ネット{f_i_j}が存在する』という風に読み替えると、まあわかる^^ 開区間(-a,a)で定義された有限な関数全体Ωを考えます。Ωの要素gと任意の点 b と任意の正数 c > 0 を取って、|g(b)-f(b)| < c を満たすようなもの全体を g の(b,c)-近傍と定義して、集合Ωは、この近傍系から誘導された位相が入っている位相空間と考えます。 そうすると、この位相で考えてネットがある関数fに収束することと、ネットの要素の関数がfに各点収束することは同じだということはわかりますよね? それでは、次は積位相を考えましょう。各点xについて {f_i(x)} が有界(すべてのf_iについて、f_i(x)が、閉区間[αx, βx]に含まれているとしましょう)ですから、Πx[αx, βx] の積集合(開区間(-a, a)に含まれるすべての x にわたる積)を考えると、[αx,βx]はコンパクトだから、その積集合もコンパクトですよね(ここに、チコノフの定理が使われます)。また、Aに含まれている関数gは、xで添え字付けられたΠx[αx, βx]の要素と考えられますね(∵各xについて、g(x)∈[αx, βx]だから)。また、AはΩの部分集合で、Πx[αx, βx]も集合としてΩの部分集合と考えられますね。 積位相のΠx[αx, βx]の位相と、単なるΠx[αx, βx]をΩの部分集合と考えたときの相対位相が等しいことはわかりますね?それがわかればあとは簡単。「Πx[αx, βx]はコンパクトだから、あるfに収束する部分ネットがある」といえます。fはΠx[αx, βx]に含まれている、すなわち、各xについて、f(x)∈[αx, βx] なので有限関数です。 わかりますか?^^;

全文を見る
すると、全ての回答が全文表示されます。
  • mikaemi
  • ベストアンサー率50% (33/65)
回答No.3

これ、条件の書き間違いですか? カッコを書いていないのは書き間違いとしても、 -1 と 1 で不連続(その近くで絶対値が限りなく大きくなる)になって、 下からと上からそれぞれ押さえてますけどあまり意味ないですよね、 単調増加関数なんだから^^ 区間を閉区間でなく、開区間の (-a, a) としてるということは、 問題の意図からして、 1. f(0) = 0 2. 0 < x < a ⇒ f(x) <= x / (a - x) 3. -a < x < 0 ⇒ f(x) >= x / (a + x) でしょうか?

ayako0101
質問者

補足

すいません、書き間違いでした。 正しくはmikaemiさんの仰る通り、 1. f(0) = 0 2. 0 < x < a ⇒ f(x) <= x / (a - x) 3. -a < x < 0 ⇒ f(x) >= x / (a + x) です。訂正ありがとうございます。

全文を見る
すると、全ての回答が全文表示されます。
  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

>どこでどのようにチコノフの定理が適用されているのかがわかりません… 関数を積集合 Π_{x ∈ (-a, a) } I_x ここで I_x = [0,x/(1-x)] or I_x = [x/(1+x), 0] の元と考えているのでしょう。

ayako0101
質問者

補足

程度の低い質問ですいませんが、『積集合の元として考える』というのがわかりません… そもそも、直積をとったら、とる前の集合と性質が異なってしまうのではないでしょうか?

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • ワイエルシュトラスの多項式近似定理の証明

    詳しく証明を書きたいのですが、教科書等で調べてもわかりません。 f(t)を有界閉区間[a,b]で連続な任意の関数とするとき、区間[a,b]上一様にf(x)に収束するような多項式の列{Pn(t)}が存在する。 というものの証明です。

  • 中間値の定理とその系について

    中間値の定理について (1)中間値の定理は逆について真でしょうか。つまり「関数f(x)が区間[a,b]で連続で、f(a)≠f(b)ならば、f(a)とf(b)の間の任意の値kに対して、f(c)=k、a<c<bを満たすcが少なくとも一つ存在する」の逆は真かどうか (2)中間値の定理の系について、[関数f(x)が区間[a,b]で連続で、f(a)≠f(b)、f(x)が単調増加または単調減少ならば、 f(a)とf(b)の間の任意の値kに対して、f(c)=k、a<c<bを満たすcがただ1つ存在する。」 の逆は言えますか? 高校数学の範囲で詳しい解説をお願いします!

  • 陰関数の定理がわかりません

    陰関数の定理について、 証明はまだ習わないで、定理だけいきなり出てきたのですが、 読んだだけではいまいち意味がつかめませんでした。 この定理が何をいおうとしているかわかり易く 説明していただけないでしょうか? (漠然とした質問で申し訳ありません) ___________________________________  陰関数の定理: f(x, y) をR2 におけるC1 級関数とし, 点(a, b) において f(a, b) = 0; fy(a, b) ≠ 0とする. このときa を含むある小さな開区間I をとれば I の上で定義されたC1 級関数 y = φ(x) で次の条件を満たすものがただ1つ存在する: b = φ(a), f(x, φ(x)) = 0 (x は 閉区間I内), さらに φ’(x) = -{fx(x, φ(x))}/{fy(x, φ(x)} が成立する. ___________________________________

  • この定理がわかると何が良いのでしょうか?

    書き方が変なところがあるかも知れませんが、ご了承ください。 以下の定理がわかると、なにが良いのか、どのような事に役立つのか、何につながるのかというのがわかりません。 よろしければ教えていただきたく思います。 本に書いてあるまま書き出します。 <リースの積分表示定理> E:ノルム空間 C:区間[0,1]で定義された全ての連続関数の作る集合 とした時、Cの線形汎関数fに対して有界変動関数φが存在し、 f(x)=∫x(t)dφ(t) (範囲は0~1) で与えられる。その時、fのノルムはφの全変動に等しい。

  • 中間値の定理の応用

    中間値の定理からつぎのことはいえますでしょうか? 「関数f(x)が区間[a,b]で連続で、f(a)≠f(b)、f(x)が単調増加または単調減少ならば、 a<x<bでf(x)=cを満たすcがただ1つ存在する。」 高校数学の範囲でお願いします。

  • 一様連続の定理

    書き方がわからず、おかしな所があるかと思いますが ご了承ください。 証明の途中の意味がわからず、もやもやしています。 <y=f(x)が閉区間[a,b]=Iで連続⇒fは一様連続> 証明 定理が成り立たないと仮定 ∃ε>0 ∀δ>0 ∀x',x''∈I:|x'-x''|<δ∧|f(x')-f(x'')|≧ε δ=1/nとして、対応するx'、x''とx'_n、x''_nとしする |x'_n-x''_n|<1/n |f(x'_n)-f(x''_n)|≧ε {x'_n}に対してWeierstrassの補助定理 (有界な数列は収束する部分列をもつ) からx_0に収束する部分列がある |x'_n-x''_n|<1/n から x''_n→x_0 (n→∞) ↑ここの部分がわかりません 『{x'_n}に対してx_0に収束する部分列』とは 例えば{x_n_j}とかだと思うのですが、 それがあることがわかると、なぜ 『x''_nはx_0に収束することがわかる』 につながるのでしょうか。 ちなみに、証明はこのあと fの連続性とx'_n→x_0&x''_n→x_0を使い 矛盾を導き出します。 宜しくお願い致します。

  • フーリエ級数の不連続点における収束について

     こんにちわ。自分あ物理系のB2の学生です。  不連続関数をフーリエ級数展開した場合、フーリエ級数ては不連続点に対して,不連続点の右極限と左極限の相加平均に収束するのでしょうか。ギブス現象は聞いたことがあるのですが、収束性は保障されるのですか。  このような質問をいたしましたのはジョルダン・ルベーグの定理で、フーリエ級数の各点収束を示そうとしたのですが、不連続点での扱いが自分は説明できなかったからです。講義で扱ったジョルダン・ルベーグの定理は  fが有界変動であり,|f|が1周期上積分可能で積分値が有限であるとする。このときfのxにおけるフーリエ級数Snが   Sn→1/2 {f(x+0) + f(x-0)} as n→∞  というもので、連続性の条件はありません。証明上の問題点は、fが有界変動であるので  φ(t) = f(x+t)+f(x-t)-f(x+0)-f(x-0) → 0 as t→0  なるφは有界変動であるから、単調増加する正値関数P,Nをもちいて  φ(t) = P(t) - N(t) + φ(0)  で表現される。このとき  P(t) + N(t)→0 as t →0 (1)  とあるのですが、xにおいてfが不連続の場合,(1)は成立しないと思う点です。

  • 中間値の定理

    中間値の定理、、、 3次方程式x^3-x^2-2x+1=0は区間(-2.1)に少なくとも1つの実数解をもつことを証明せよ f(x)=x^3-x^2-2x+1とする f(-2)=(-2)^3-(-2)^2-2×-2+1=-7 f(1)=-1-1+2+1 f(-2)とf(1)は互いに異符号である よって中間値の定理により f(x)=0を満たすxが少なくとも1つ存在する 中間値の定理って 1 関数f(x)が閉区間[a,b]で連続で、f(a)≠f(b)の時f(a)とf(b)の間にある任意のkに対してf(c)=kを満たす点cが少なくとも一つ存在する。 2 特にf(x)が閉区間[a,b]で連続で、f(a)とf(b)が異符号の時f(x)=0を満たすx即ち方程式f(x)=の解が少なくとも一つ存在する。 これって何で中間値の定理の2番使って証明してますが何で2番使うんですか? だって互いに異符号なのを最初に示してる時点で2を使ってますよね 2は中間値の定理ですよね あとこれがどうなったら、公式1にすればいいんですか?

  • 大学1年レベルの級数に関する問題です

        ∞             ∞ f(x)=Σ(a_n・x^n)に対して、Σa_n/(n+1)が収束すれば     n=1            n=1 1       ∞ ∫f(x)dx=Σa_n/(n+1) が成立することを示せ。  0     n=1   という問題についてなのですが 私はこの問題を見たとき、次の定理                閉区間A=[a,b]上の連続関数f_n:A→R(n=1,2,・・・)を一般項とする関数項級数Σf_n(x)がA上で一様収束していれば a  ∞      ∞  b ∫ Σf_n(x)dx=Σ ∫f_n(x)dx が成立する。 b n=1       n=1 a という、項別積分の定理を使おうと思いました。 それで、f_n(x)=a_n・x^nとし、この問題において与えられたΣa_n/(n+1)が収束という条件から、Σf_n(x)が[0,1]上で一様収束することを導こうとしたのですが、うまくいきませんでした。 しかし、Σa_n/(n+1)が収束ではなく絶対収束だったら、Σf_n(x)が[0,1]上で一様収束することを導けました。 具体的には、 Σa_n/(n+1)が絶対収束より、Σ{a_n/(n+1)}x^nの収束半径Rは1<Rを満たす。また、Σ{a_n/(n+1)}x^nとΣa_n・x^nの収束半径は等しい。 ここで 「整級数Σa_n・x^n=Σf_n(x)の収束半径をRとする。0<s<Rなる任意のsに対し、閉区間[-s,s]でこの関数級数は一様収束する」 という定理から、とくにs=1としてやれば、関数項級数Σf_nは[-1,1]で一様収束することが導ける。よって[0,1]でももちろん一様収束するから項別積分の定理が使える。 としました。 なのでもしかしたら”収束”という箇所がミスプリントなのでは?と思ったので質問させていただきました。 ですが、私が単に、収束という条件から答えを導き出せてない可能性のほうが高いと思うので。。。 どなたか回答よろしくお願いしますm(_ _)m ぜんぜん解けなくてとても困ってます・・・。

  • コーシーの平均値の定理の問題です。

    f(x),g(x)は[a,b]で連続かつ(a,b)上微分可能とする。さらに、g(x)が狭義単調増加関数であるとき、コーシーの平均値の定理、すなわち f(b)-f(a)/g(b)-g(a)=f'(c)/g'(c) c∈(a,b) となるcがあることをつぎのように証明せよ。 閉区間[g(a),g(b)]で定義される関数h(x)=f(g^-1(x))に平均値の定理を適用するです。 わかるかたがおられたら是非とも教えてください。よろしくお願いします。