慣性モーメントについての疑問

このQ&Aのポイント
  • 慣性モーメントや角速度、運動エネルギーについての疑問があります。
  • 自分で考えた式で慣性モーメントを求めてみましたが、正しいかどうかわかりません。
  • 角加速度や回転のエネルギーについても理解が不十分です。
回答を見る
  • ベストアンサー

慣性モーメントについて

いまいちよくわかりません。忙しいと思いますが、教えてください。 密度ρの物質でできている、半径a厚さdの円盤と、半径b厚さdの二つの円盤を、重心を合わせてはり合わせ、半径aのほうの円盤の円周に沿って長さlの紐を巻きつけ一定の力Fでその紐を引っ張り、回転させることを考える。 という問題で、 慣性モーメント・・・I=(1/2)*π*ρ*d*{a^(4)+b^(4)} 角速度・・・・・・・ω=2F/[π*a*d*ρ*{a^(2)+b^(2)}] 運動エネルギー・・・k=I*ω^(2)/2=F^(2)*(a^(4)+b^(4))/[π*a^(2)*d*ρ*{a^(2)+b^(2)}^(2)] という風に自分で考えたんですが、角加速度と回転のエネルギーがよくわかりません。どう考えればよいのでしょうか。あと、上の慣性モーメントなど間違って考えてるかもしれないので、もしそのときは、教えていただけると助かります。 よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • sanori
  • ベストアンサー率48% (5664/11798)
回答No.1

私も慣性モーメントを計算してみましたが、一致しました。 しかし、次からが問題。 角速度ωが定数になってしまっています。しかも、次元が変。 ωは定数ではなく時刻tの関数あって、単位はs^-1になるはずです。 ωを時刻tの関数とした式が既知であれば、 角加速度はωを微分したものが角加速度ですから、簡単に求められます。 しかし、この問題の場合は、角速度ωよりも先に角加速度dω/dtを 求めるほうが簡単です。 F・a = I・dω/dt dω/dt = F/I = F*a /{(1/2)*π*ρ*d*{a^(4)+b^(4)} 角速度ωは、上記をtで積分すれば求まります。 最後に、 回転のエネルギーは、運動エネルギーです。 2つの円盤それぞれについて、r=0→a、r=0→b の区間で、 積分を行います。 半径方向の微小領域drにおける・・・ ・円盤の質量は、2πrρd・dr ・速さは、v=rω ・よって、drの部分における運動エネルギーdEは、  dE = 2πrρd・dr・v^2/2 = πρd・r^3・ω^2・dr ∫(0からa)πρd・r^3・ω^2・dr + ∫(0からb)πρd・r^3・ω^2・dr が運動エネルギー(回転のエネルギー)

xk4021kx
質問者

お礼

お礼メール、遅くなってすみませんです(_ _(--;(_ _(--; 何とか試験クリアできました。 ありがとうございました★

その他の回答 (1)

  • sanori
  • ベストアンサー率48% (5664/11798)
回答No.2

1行間違えました。 dω/dt = F/I = F*a /{(1/2)*π*ρ*d*{a^(4)+b^(4)} が間違い。  ↓ dω/dt = Fa/I = F*a /{(1/2)*π*ρ*d*{a^(4)+b^(4)} に訂正。

関連するQ&A

  • 慣性モーメントについて

    半径b、質量Mの円盤を、重心から距離hの点に円盤に垂直な軸をつけて回転台に取り付けて振動させて周期と慣性モーメントを測定しました。hを重心から遠ざけていくと、周期と慣性モーメントが大きくなりました。イメージはわくのですが、なぜなのでしょう?  説明できる方いましたら教えてください。あと円盤からどのように力が働いているのかも教えていただければうれしいです。 お願いします。

  • 慣性モーメントの運動エネルギー

    お世話になっております。 慣性モーメントの運動エネルギー(正式名称は回転運動のエネルギーでいいのでしょうか?)について よくわからないことがでましたので質問させていただきました。 たとえば 重心周りの慣性モーメントがIzで質量がm,回転中心軸からの距離がlであるとき、その剛体が中心軸に対して角速度wで動いている場合 慣性モーメントの運動エネルギーは ((Iz + mll)/2)w^2 となることはわかっています。 では、ある円柱を地面にそって転がすとき、 重心が円柱の中心から半径方向に距離bだけずれている場合 回転運動のエネルギーはどうなるのでしょう? (このほかに重心速度由来の(並進)運動エネルギーがつくと思われますが、それは今回置いておくことにします) さて、さきほどと同様に重心周りをIz,質量をmとしたとき円柱の回転運動のエネルギーは ((Iz + mbb)/2)w^2となるのでしょうか? それとも (Iz/2)w^2となるのでしょうか? なお、このときの角速度wを測る基準となるθは重心からとるべきなのか、中心から取るべきなのかもよくわかりません。 どなたかご教授お願いいたします。

  • 慣性モーメント

    水平にした円環の慣性モーメント;M(r_1^2+r_2^2)/2 垂直にした円環の慣性モーメント;M((r_1^2+r_2^2)/4+d^2/12)   の二つの式を求め方がさっぱりわかりません。 薄い円板の慣性モーメント;Mr^2/2とすると水平にした円環の慣性モーメントのほうはドーナツ型をしていて、厚さは無視できるから外半径で求めたモーメントとから内半径で求めたモーメントをひけばいいのではないかと思ったんですけどなんかちがうみたいで、I_bはさっぱりわかりません。 I_a;水平にした円環の慣性モーメント I_b;垂直にした円環の慣性モーメント M;全体の質量 r_1;円環の内半径 r_2;円環の外半径 d;円環の厚さ r;薄い円板の半径

  • 慣性モーメントについて教えてください!!

    慣性モーメントについて教えてください!! 慣性力I1,質量m1の物体に回転軸から距離r1(重心位置)を加速度aで動かしたものと、 慣性力I2,質量m2の物体に回転軸から距離r2(重心位置)を加速度aで動かしたものでどちらが早く1回転するかが求められません。 F=ma,N=Ia式から求めれるのでしょうか。 また、回転軸にトルクT1がかかっている場合はどうなるのでしょうか。 分かりにくい質問で申し訳ないですが、宜しくお願いします。

  • 慣性モーメント

    以下の形状をした均質な物体(質量M)の慣性モーメントを求めよ。 1、 長さ2a の棒で、回転軸は重心を通りかつ棒に垂直。 2、 半径a の球体で、回転軸は球体の接線。 3、2 辺の長さがそれぞれ2a、2b の長方形板で、回転軸は重心を通りかつ板に垂直。 4、 半径a の円板で、回転軸は重心を通る円板上の直線。 この問題を解くときに使う公式と解法を教えてください。 よろしくお願い致します。

  • 慣性モーメント

    類似の質問がありませんでしたので質問させていただきます。 半径rの円盤について、回転軸が板面に平行なものの慣性モーメントの求め方がわかりません。 どのようにしたらよいのでしょうか。 よろしくお願いします。

  • 重心周りの慣性モーメント 

    分からないので質問させて頂きます。 慣性モーメントについてなんですが 半径b、質量Mの円板の重心周りの慣性モーメントが(1/2)Mb^2になるのを示すにはどうすればいいのでしょうか?

  • 回転する棒のある瞬間の慣性モーメント

    こんにちは、いつも勉強させてもらっております。 ある物理の問題で、私の解法が模範解答と異なるため、添削頂き、間違っている点を ご指摘頂きたく質問させて頂きました。どうか宜しくお願いします。 添付の図の上段をご覧下さい。質量Mの棒abの両端がそれぞれのスライダーの上を 動けるように固定されています。 左端aは鉛直方向に、右端bは水平方向にそれぞれ動けるようなスライダーです。 左端にはスライダーに沿ってバネ(定数: k)が仕込まれております。 はじめ、棒は水平方向に押さえられており、このときのバネの長さが自然長であるとします。 今、「はじめ」の状態から、棒abをリリースして、棒abが図のように水平方向と角度θとなったとき、 左端aの速度を求めよ、という問題です。 私の解法を次に示しますので、どうか検証頂ければと思います。 はじめの状態でのエネルギーをゼロとして、 角度がθとなったときのエネルギーの合計がゼロとなるようにして求めたいと思います。 バネの弾性エネルギー: 0.5k(Lsinθ)^2 重心(abの中点)の位置エネルギー: -Mg x 0.5Lsinθ 重心の運動エネルギー: 0.5MVg^2 棒の回転の運動エネルギー: 0.5Iω^2 これらの総計がゼロであるという式を立てます(式1) ここで未知数は、 重心の速さVg、棒の慣性モーメントI そして棒の角速度ωとなります。 そして、aとbの速度の向きが規制されている点に着目し、棒の回転について 瞬間中心cを求めました(添付の図の下段: 角acbは直角)。この瞬間、 棒のどの点もこの瞬間中心cを中心に角速度ωで回転しています。ですので、 このことから棒の慣性モーメントを求め、重心の速さと棒の角速度の関係を 求めることができます。 棒の慣性モーメントは、次のようにして求めました。 棒の重心(aとbの中点)を回転軸とした場合の棒の慣性モーメント:Ig = (ML^2)/12 に重心Gからc点までの距離(L/2)の二乗と棒の質量をかけたものを足します(平行軸の定理)。 I = Ig + m(L/2)2 = (ML^2)/3 また、Gから瞬間中心までの距離(L/2)が半径となり、 重心の速さVg = 回転の半径(L/2) x ωとなります。 以上により、未知数はωだけとなり、式1からωが求まります。 ωは点aの点cまわりの回転の角速度でもあり、点cから点aまでの長さ(Lcosθ)も 分かっているため、点aの速度は、大きさがωLcosθで鉛直下向き、となるかと思います。 いかがでしょうか。誤りなどご訂正頂ければと思います。 ■なお、模範解答では、 やはり瞬間中心を求めて、gとその距離からVgとωの関係をもとめて Vg = (L/2)ω としているまでは同じなのですが、 運動エネルギー = 0.5m(Vg^2) + 0.5Ig(ω^2) = (1/6)m(Lω)^2 と記されており、Ig = (1/12)mL^2 で計算されれています。 これは、私の知る限り、重心を回転軸とした棒の回転の慣性モーメントであり、 模範解答では回転の中心が重心Gであると言っているのではないかと思っています(模範解答自体には 特にそのような記述はなく上の運動エネルギーの式が示されているだけです)。 いかがでしょうか。長くなってしまい申し訳御座いませんが、真剣に悩んでおりまして、 どうか宜しくお願いします。

  • 慣性モーメントの問題について教えてください

    質量M、半径a、高さhの円柱の上円面に接し、その上円面の中心をとおる軸回りの慣性モーメントIを求めよ。 という問題なのですが、以下のような求め方でいいのでしょうか? (1)円板の慣性モーメントの公式(1/2Ma^2)を用いて円柱の重心をとおる軸回りの慣性モーメント(Ig)を求める Ig=M/2・a^2 (2)平行軸の定理を用いて重心からh/2離れた慣性モーメントを求める I=Ig+M・(h/2)^2=M/4(2a^2+h)

  • 慣性モーメント

    高校の物理で慣性モーメントの実験をして、その中で円盤の車輪の慣性モーメントと同じ重さの長方形板を回転させた際の慣性モーメントを測定したら長方形板の慣性モーメントの方が大きくなりました。なぜ同じ重さなのに円盤より長方形板の方が慣性モーメントが大きくなるのかどうか教えてください。