• ベストアンサー

準同型写像について

「GL(n,R)で実数係数のn次正則行列のなす群とする。また、R*で0を除く実数全体に乗法で積を定義した群とする。AをGL(n,R)に含まれるものに対して、行列式detAを対応させる写像det:GL(n,R)→R*は群の全射準同型写像であることを確かめよ。また、その核はどのような部分群となるか??」 という問題について、手がつけられません>< アドバイスお願いします><

質問者が選んだベストアンサー

  • ベストアンサー
  • ojisan7
  • ベストアンサー率47% (489/1029)
回答No.4

ご自分で、どの程度考えましたか? 準同型であることは、積の行列の行列式の性質から明らかですね。全射であることは、任意の実数aが行列式の値となる行列A∈GL(n,R)を見つければよいのです。核は行列式が1となる行列ですね。これは、群をなし、特殊線形群としてよく知られた群ですよね。

その他の回答 (3)

  • jmh
  • ベストアンサー率23% (71/304)
回答No.3

> 手がつけられません なぜ?

  • zk43
  • ベストアンサー率53% (253/470)
回答No.2

表現の違いだけであり、detの性質から分かります。 まず、GL(n,R)に含まれる行列の行列式detAは、Aを変えることによっ て、0以外のどんな実数値も取り得るということは良いでしょう。 例えば、任意の実数x≠0に対しては、行列Aとして、 x 0 0 1 を考えればよい。 これで、detは全射であることが分かります。 また、detAB=detA×detBという行列式の性質から、detが準同型写像 であることも良いでしょう。 (f:G→G’が準同型写像であるとは、任意のx,y∈Gに対して f(xy)=f(x)f(y)を満たすこと。fをdetと考える。) また、核とはdetA=1となる行列全体の集合ですが、これはn次特殊 線形群SL(n,R)となります。 (これが群をなすことは容易に確認できると思います。) 記号で書くならば、Kerdet=SL(n,R) これから準同型定理により、GL(n,R)/SL(n,R)とR*は群として同型とな ります。つまりGL(n,R)の行列にSL(n,R)の行列を掛けても行列式は変わ らないということです。

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

>アドバイスお願いします 準同型すらわからないということでしょうか???

関連するQ&A

  • 線形写像の問題を教えて欲しいです。

    n次元Rベクトル空間Vおよび線形写像φ:V→Vについて φの行列表現Aについて、detA≠0ならばφは線形同型写像であることを示せ 全射は分かったんですが、単射の示し方が分かりません。 詳しく教えて欲しいです。

  • 準同型写像

    加法群としての準同型写像はいくつありますか? (1) Z12→Z14 (2)Z12→Z16 準同型写像はいくつありますか? (1)Z→Z (全射) (2)Z→Z2 (3)Z→Z2(全射) (4)Z→Z8 (5)Z→Z8(全射) (6)Z12→Z5(全射) (7)Z12→Z6 (6)Z12→Z6(全射) 手順も含めて教えてください。

  • 写像の問題をお教え下さい。

    いくら考えても全くわかりません。 お教えいただければ大変嬉しいです。お願いします。 問題 Aをm×n行列とし、行列とベクトルの積で与えられる線形写像A:R^n →R^m:x ↦ Axを考える。 以下の問いに答えよ。 (1) 写像Aが単射であるならば、n ≤ mであることを示せ。 (2) n ≤ mであって、写像Aが単射でない例をあげよ。 (3) 写像Aが単射であるならば、rankA = nであることが必要十分であることを示せ。 (4) 写像Aが全射であるならば、n ≥ mであることを示せ。 (5) n ≥ mであって、写像Aが全射でない例をあげよ。 (6) 写像Aが全射であるならば、rankA = mであることが必要十分であることを示せ。 (7) もしn = mならば、写像Aが全単射であることとAが正則であることが必要十分であることを示せ。

  • 準同型写像

    S_0は閉区間[0,1]で連続な関数全体の集合とし、さらにS_0は加法群とする。このとき、『f∈Sから実数Rへの写像f→∫_0~1f(x)dxは、S_0から実数Rへの準同型写像である。』 これを証明してください。できればお願いしますm(__)m (読みにくいかもしれませんが、インテグラル0から1です。)

  • 同型であることの示し方を教えてください。

    整数Zと有理数Qが加法群として同型であるかどうかを示したいのですが、 同型であることを示す証明がいまいちできません。 写像をどのように定義すればいいのですか? 写像を定義すればあとその写像が f(ab)=f(a)f(b)であることを示して 全射であることを示せばいいと思うのですが・・ 写像がいまいちわかりません。 あと、R → R*=R-{0} の時の写像もどのように考えればいいのでしょうか?

  • 準同型写像2

    f∈Sから実数Rへの写像f→∫_0~1f(x)dxは、S_0からRへの準同型写像である。 これを証明してください。できればお願いしますm(__)m (読みにくいかもしれませんが、インテグラル0から1です。)

  • 全射準同型

    対称群の元にその符号を対応させる写像は、対称群S_nから位数2の巡回群{±1}への全射準同型であることを示せ。なんですが、わかりません。教えてください。

  • 準同型の写像

    巡回群Z/nZから巡回群Z/mZへの準同型が0(ゼロ)写像ただ一つしか存在しない条件は、nとmが互いに素、即ち(n,m)=1であることを示せ。なんですが教えてください、お願いしますm(__)m

  • 準同型写像

    m,n∈Nにおいて f:Z → Z/mZ + Z/nZ a → (a+mZ,b+nZ) とするとき、fは準同型写像であることを示せといわれましたが何を示せば良いかわかりません!あとKerfをmとnの言葉で答えよというものや、fが全射となる条件というのもさっぱりなのでヒントでもよいですから教えてもらえるとうれしいです!

  • 一次分数関数について

    A=C∪{∞}上の一次分数関数f:A→Aをf(z)=(az+b)/(cz+d) (a,b,c,dは実数、ad-bc≠0)で 表す。一次分数関数全体は、写像の合成を積として群となることが知られている。 これをGとする。 GL2(R)からGへの写像φを g=(a b|c d) (行列)に対し、一次分数関数f_g:z→(az+b)/(cz+d) を対応させる写像として定める。 (1) φが準同型写像であることを示せ。 (2) φが全射であることを示せ。 (3) φの核を求めよ。 (4) 準同型定理を使って、GをGL2(R)の剰余類群として記述せよ。 わかりません。よろしくお願いします。