• ベストアンサー
  • 困ってます

微分の一般的な定義は?

識者の皆様よろしくお願い致します。 微分のより一般的な定義を知りたく思っております。 距離空間⊂正規空間⊂…⊂位相空間 と空間は拡張できますが、微分の定義は何処まで拡張できるのでしょうか? また、その時の定義を具体的にお教え下さい。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数155
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#221368

 個人的意見です。  自分は微分とは「局所線形化」、つまり「局所比例」の事だと思っています。そうなるとやはり、距離構造(計量)がないとつらいので、微分は距離空間までかな、というイメージです。じっさい微分多様体では、非常に無理して距離空間との関連を付けてる気がします。ただし距離空間は、ふつうに考えられてるより、ずっと一般的なものだと思えます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

どうも有り難うございます。 お陰様でてとても参考になりました。

関連するQ&A

  • y=x^2やz=x^2+y^3の微分は何になる?

    よろしくお願い致します。 『Rを実数体とする。距離空間X:=Π[i=0,n]R,Y:=Π[i=0,m]Rに於いて、 T:={A∈2^(X);A={(x1,x2,…,xn);∃ci,di∈R such that ci<xi<di}}とし、 a∈Xに於いて、map f:nbhd(a,(X,T))→Y (nbhd(a,(X,T))はaの位相空間(X,T)に於ける近傍系)に於いて、「fはaで微分可能である」』 の定義を 『B:={R上の線形写像g:X→Y ; [0<∀ε∈R,0<∃δ∈R such that (h∈{k∈X;0<k<δ且つa+k∈nbhd(a,(X,T))})}ならば|f(a+h)-f(a)-g(h)|/|h|<ε]}≠φ とし、fはaで微分可能であるという 又この時、Bは単集合となり、(df)aと表記し、「fのa∈nbhd(a,(X,T))に於ける微分」という』 というのが微分の定義だと思います。 つまり、微分とは線形写像の事である。 そうしますとy=x^2のx=aでの微分(df)aや z=x^2+y^3の(x,y)=(a1,a2)での微分(df)(a1,a2)はどのように書けるのでしょうか?

  • 距離空間でどのように開集合族をとれば位相空間になる?

    よろしくお願い致します。 距離空間Xはその距離によって定められる開集合族をGとすればXは位相空間になると本に書いてあったのですが いまいち文意が分かりません。 距離d:X^2→Rに於いて、具体的にどのようにGを定めればいいのでしょうか?

  • lim[x→∞]f(x)の位相での定義は?

    よろしくお願い致します。 『0<∀ε∈R,0<∃δ∈R;0<|x-a|<δ⇒|f(a)-f(x)|<ε』 は 『2つの位相空間(X, T)、(Y, S) と map f;X→Y と L:={b∈Y;∀ε∈nbhd(b),∃δ∈nbhd(a) such that f(δ)⊂ε}(a ∈X)に於いて、 L≠φ の時、f(x)はLに収束するといい limf(x):=L x→a と表記する。そして、L=φの時、f(x)は発散すると言う』 という具合に一般で定義できると思います。 『0<∀ε∈R,0<∃δ∈R;δ<x⇒ε<f(x)』や 『0<∀ε∈R,0<∃δ∈R;δ<x⇒-ε>f(x)』 に就いては、 『Bは位相空間(X*,T*)の部分集合Aの開被覆である』 の定義は 『T* の部分集合Bに於いて、A⊂∪[b∈B]b』 『位相空間(X*,T*)の部分集合Aはコンパクトである』 の定義は 『X* の部分集合Aの任意の開被覆B(⊂T*)に対し、∃{b1,b2,…,bn} ⊂B (n∈N) such that A⊂∪[i=1 to n]bi』 『位相空間(X*,T*)はコンパクト空間をなす』 の定義は 『位相空間(X*,T*)の部分集合X* はコンパクトである』 『位相空間(X,T)が位相空間(X*,T*)の中で稠密である』 の定義は 『X⊂X* 且つ φ≠∀A∈T* に対して,A∩X≠φ』 『位相空間(X*,T*)は位相空間(X,T)のコンパクト化である』 の定義は 『X* はコンパクト空間 且つ XはX* の中で稠密である』 従って、『x→∞』の定義は『xをa∈X* に近づける』を意味す るので εとδを使うと、 2つの位相空間 (X,T)、(Y,S) と map f: X → Y があり、位 相空間(X*,T*)は(X,T)のコンパクト化である時、 L:={b∈Y;∀ε∈nbhd(b,(Y,S)),∃δ∈nbhd(a,(X,T)) such that f(δ)⊂ε}(a∈X*)に於いて、 L≠φ の時、f(x)はLに収束するといい lim f(x):=L x→a と表記し、 L=φの時、f(x)は発散すると言う。 例:実数体RではX*はR∪{+∞,-∞}に相当し、a∈{+∞,-∞} と定義してみたのですが、 どんな位相空間(X,T)やコンパクト化(X*,T*)では良いという訳ではなく、 夫々に何らかの条件を付け加えねばならないような気がします。 どのような条件を付ければ 『0<∀ε∈R,0<∃δ∈R;δ<x⇒ε<f(x)』や 『0<∀ε∈R,0<∃δ∈R;δ<x⇒-ε>f(x)』 の一般での定義が完成しますでしょうか?

  • 写像の一致とは??

    f,gを位相空間SからRへの(実数値)連続写像とする。 Sが距離空間と仮定して、Sの至るところ稠密な部分集合D上でfとgが一致するなら(つまりf|_D=g|_D)、fとgはS上全体で一致する(つまり同じ写像)を示せ。また一般の位相空間に対しても成り立つことを示せ。 この問題で、写像の一致とはなにをしめせばいいか、どのように用いればいいのかわかりません。教えてください。

  • 「収束」を定義すれば、位相も定義できる?

    位相空間では、点列の収束という概念が定義されていると思います。手元に適当な本がないので、不確かな記憶ですが、 位相空間Xの点列(a_n)がαに収束する ⇔αを含む任意の開集合Oについて、あるNが存在して、n≧Nならばa_n∈Oである という雰囲気の定義だったと思います。(nは自然数のような離散的な値ではなくてもよいはずですが、自然数と考えて問題ありません) さて、ある空間X上の点列(a_n)に対して「収束(極限)」の概念を定義したとしたとします。 この時、空間Xに適当な位相構造を入れてやる事で、位相空間Xにおける収束と、ここで定義した収束が一致するようにする事は可能でしょうか?(もし、必要なら、Xはベクトル空間としても構いません) そもそも何を「収束」と呼ぶべきかすら分からないですが、一般的な定義あるのであればその定義と考えて差し支えありません。(ないのであれば、困ってしまうのですが、きっとあるでしょう) 具体的な例としては、ヒルベルト空間の線型演算子には、「弱収束」や「強収束」と言った概念がありますよね。これらの意味の収束を与える位相は存在するのか、という事です。(具体的にどう構成するのかは知りませんが、「弱位相」とか「強位相」と呼ばれる位相があったと思います)

  • ユークリッド空間と距離空間の違いについて

    位相の本を読んでいるのですが ユークリッド空間と距離空間の違いがよくわかりません。 両方とも距離が定義されています。 違いと言えば、対象としている集合が ユークリッド空間R^n 距離空間は、一般の集合 です。 一般の集合に対して、距離というものが定義できるものが 距離空間で、ユークリッド空間はその1つと考えれば よいのでしょうか。 以上です。

  • アフィン空間 ユークリッド空間 ベクトル空間

    アフィン空間についていろいろ勉強しているのですが、なかなかわからなくて・・・もう何度質問したことか>< アフィン空間はベクトル空間ではないと思っているのですが、アフィン空間とベクトル空間が同じになる場合があるのでしょうか? 一次結合の係数和が1の時、アフィン空間=ベクトル空間となるのでしょうか? また、アフィン空間はユークリッド空間から絶対的な原点・座標を取り除いた空間ですよね(wiki参照)。以前の質問で、計量の有無はアフィン空間であるか否かには関係無いとの事でした。 ということは、アフィン空間はベクトル空間ではないが位相空間、計量を定義すれば距離空間となるのでしょうか? 私のイメージでは、 ある集合→(ベクトルを定義)→ベクトル空間→(位相を入れる)→位相空間→(ノルム・内積を定義)→距離空間 なんですが・・・ アフィン空間はこのイメージから外れてしまって良くわからないのです・・・

  • 一般での極限の定義はこれで正しい?

    こんにちは。 一般での極限の定義をしています。 (X1,d1),(X2,d2):距離空間(d1,d2は距離関数), map f : X1→X2 に於いて、 limf(x)=α  (x,a∈X1,α∈X2) x->a の定義は ∀ε>0,∃δ>0 ; 0<d1(x,a)<δ⇒d2(f(x),α)<ε で正しいでしょうか?

  • 位相数学について再び質問です

    http://oshiete1.goo.ne.jp/qa2686308.htmlで質問したものです。 また自分なりに考えた解答を添削&教えてください。 問1-1)(X、Ox)(Y,Oy)を位相空間とする     X × Yの直積位相とは何か? これがさっぱりわかりません。 問1-2)XとYがハウスドルフ空間ならば、X × Yもハウスドルフ空間であることを示せ。 これもさっぱりです。たぶん問1-1を使うと思います。 問2)(X、d)を距離空間とする    距離dの定めるXの位相Odの定義とはなにか? これもわかりません、どういう意味でしょうか?位相Odが距離空間の定義を満たすということでしょうか? 問3)Xがコンパクトで、A⊂Xが閉集合ならAもコンパクトであることをしめせ。 Xがコンパクトだから、Xの任意の開被覆が必ずXの有限被覆を部分集合として含んでいる。ここまではいいと思います。たぶんAがコンパクトでないと仮定して矛盾を示すと思います。これ以上がどうしてもわからないです。    

  • 連続関数の定義に関して(位相空間)

    「定義 (X、O_X)、(Y、O_Y)を位相空間とする。写像f:X→Yが連続であるとは、U \in O_Y→f~(-1)(U)\in X を満たすことである。(ただし、A\in Bは、AがBに含まれているという意味とする)」 と”連続”の定義が位相空間論の本には載っていて、この定義がε&#65293;δ論法での連続の定義と同じであることが一般に言われていますが、どうして位相空間論における連続の定義では、f^(-1)の存在を特に何の指定もなく認めてしまっていいのか、その辺りがよくわかりません。もしもわかっている方がいらっしゃれば、お教えいただけないでしょうか?