後継者対応とは?

このQ&Aのポイント
  • 後継者写像について、その性質とは何でしょうか?
  • 後継者写像は写像ではなく対応であり、後継者対応とは呼ばないのでしょうか?
  • 後継者対応とはどのような性質を持つのか、解説してください。
回答を見る
  • ベストアンサー

後継者写像は後継者対応では?

識者の皆様、よろしくお願い致します。 『A×Bの部分集合をfとし、AからBへの対応と呼び、対応f:A→Bと書く。』 ですよね。よってA,Bが空集合でも対応は定義できる。 そして、∀A'⊂A,f(A')⊂BをA'のfによる像と呼ぶ。 ですよね。(つまり、像は厳密には常にBの部分集合) そして、 『対応f:A→Bが特に「x∈A⇒f({x}):単集合」は真 となる時、この対応fをAからBへの写像と呼ぶ。』 ペアノの公理で 集合Aはφを含む。 ∀x∈Aならばf(x):=x∪{x}∈Aとなるような写像fを後継者写像と呼ぶ。 となってますが、この時のf(x)はx≠φなら単集合になってませんよね。 だからこのfは写像ではなく、対応となると思うのですが どうしてどの本も後継者対応と呼ばないのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.2

>『対応f:A→Bが特に「x∈A⇒f({x}):単集合」は真 となる時、この対応fをAからBへの写像と呼ぶ。』 >という定義の仕方が間違っているのでしょうか? ああ。やっとわかった。 対応 f : A -> B が写像であった場合、そのままの定義だと f({x}) = {y} は B の部分集合ですが、面倒なので f(x) = y ∈ B と書くということです。 ペアノの公理の所ではもはや、一般的な対応について考えることはなくなっていて、写像f(x) = x∪{x} と書くことで「対応 f は写像であり、かつ f({x}) = {x∪{x}}」を省略しているのだと思って下さい。

hhozumi
質問者

お礼

有難うございます。 納得いたしました。

その他の回答 (1)

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

ペアノの公理は x ∈ A に対して、x∪{x} も A の「要素」であることが核心です。 言い換えると「f が写像である」ことが公理の構成要素として含まれているのです。

hhozumi
質問者

お礼

ご回答有難うございます。 つまり、 『対応f:A→Bが特に「x∈A⇒f({x}):単集合」は真 となる時、この対応fをAからBへの写像と呼ぶ。』 という定義の仕方が間違っているのでしょうか?

関連するQ&A

  • 集合と写像

    集合と写像に関する証明で,そうなるということはわかっているのですが,どのように証明すれば良いかわかりません。 問題は 集合Xから集合Yへの写像f:X→Yによる像に関して,以下を示せ。 (1) 任意の部分集合A,B⊂Xに対して,f(A∩B)⊂f(A)∩f(B) (2) fが単射であるならば,任意の部分集合A,B⊂Xに対して,   f(A∩B)=f(A)∩f(B)が成り立つ (3) Xの任意の部分集合A,B⊂Xに対して,f(A∩B)=f(A)∩f(B)が成り立つならば   fは単射である。 どなたか解説お願いします。

  • 写像に関する問題

    f : A→Bを集合間の写像とし、g : 2^B→2^Aを   g(X)=f^-1(X) とする。ただし、Bの部分集合Xに対して、 f^-1(X)は、f : A→Bに関するXの逆像   f^-1(X)={a∈A|f(a)∈X} で定義されるAの部分集合とし、集合Aに対して、 2^AはAの部分集合全体とする。 (1)fが全写なら、gは単写 (2)fが単写なら、gは全写 であることを示せという問題ですが、 (1)   X1≠X2のとき、g(X1)≠g(X2)となることを示す。 X1,X2∈2^Bとし、X1≠X2とする。また、x1,x2∈Aとすれば、fは全写であるので、f(x1),f(x2)∈B。ここで、f(x1)∈X1,f(x2)∈X2とすれば、 ここで、X1≠X2より、x1≠x2。従って、g(X1)≠g(X2)となり、gは単写。 (2)  任意のX1をとったとき、g(X1)∈Aとなることを示す。 fは単写より、f^-1(x1)∈Aとなるような元x1∈X1が存在する (ただし、X1⊂B)。従って、写像gの定義より、 常にg(X1)∈Aとなるような元g(X1)が存在する。従って、gは全写。 上記のように考えたのですが、この考え方であっているのでしょうか? お手数ですが、どなたかご指南いただけないでしょうか? よろしくお願いします。

  • 写像についてです

    (1) 『写像f:A→Bとg:B→Cについて、fとgとの合成写像はfの終集合とgの始集合(定義域)とが一致するときに限って定義される』(集合位相入門/松坂和夫) これについて、 f:A→Bとg:C→Dで f(A)⊂BかつB⊂Cならば べつにfの終集合とgの始集合(定義域)とが一致しなくても良いと思ったのですが、違うのでしょうか? (2) 『対応(≠写像)F,GがいずれもAからBへの対応であって∀a∈AでF(a)=G(a)の時FとGは等しい。2つの対応の相等を論じ得る為には、もちろんそれらの始集合,終集合がそれぞれ一致していることが前提である』(集合・位相入門/松坂和夫) これについても似たようなことなんですが、FがAからBへの対応,GがAからCへの対応であり,さらに任意のAの元aについてF(a)=G(a)という時は,別にB=CでなくともC⊂BとかB⊂Cのときも対応FとGは等しいと言えませんか? 私は,始集合が一致していることとF(a)=G(a)が成り立っていること つまり始集合と値域が一致していれば、この2つの対応は等しいとは言えると思ってました。 具体的には 対応F:A→B対応G:A→Cとする。ここでは、B⊂Cとしても一般性は失われない。 さて、今が任意Aの元aについてF(a)=G(a)が成り立っているとする。 これはF(A)=G(A)ということ。 ここでF(A)=G(A)⊂B⊂C⊆Dなる集合Dをとれば対応FとGはともにAからDへの対応とも言える。 すると、定義から対応FとGは等しい。 これではダメでしょうか? 始集合と終集合に関する記述はどうも混乱します… (1)(2)についてどなたか分かる方がいらっしゃいましたら回答よろしくお願いしますm(__)m

  • 写像について

    写像がwell-definedである定義がよく分かりません。 というのも、well-definedの定義が もしa=bであるなら写像 f(a)=f(b)である。 というのは分かります。 ですが、教科書に、正式な写像の定義とは 写像f:A->Bとは、集合AXBの部分集合(a,f(a))であり (a∈A、f(a)∈B) 写像がwell-definedである時は、(集合としての)写像の全ての最初の要素(Aに属するもの)が一度しか現れない時である。 みたいなことが書かれてました。 ですが、仮にそうだとしたら 写像 f: A->R で、f(a)=5 だとします。 ですが、5は10/2とも20/4とも同等関係にあるため、さらに5, 10/2, 20/4∈Rです。 f(a)=5, 5=10/2 で推移律から f(a)=10/2と言えるはずです。 で、b=5 b'=10/2とおくと f(a)=b, f(a)=b' となり、写像は(a,b)と(a,b')と最初の要素aが二個以上出てきます。 つまり、これはwell-definedでは無い、ということになります。 勿論(a,b)と(a,b')は同値関係にあり、上のもしa=bならばf(a)=f(b)である というのには適応しますが、 教科書の定義には反することになってしまいます。 何故ならこの写像は(a,b)と(a,b')が成立せねばならず、さらにbとb'はRに存在することから 確実に二つ以上の(実際は無限)の最初の要素がaの写像集合が出来てしまうからです。 分かりにくいかもしれませんが、もう一度言うと、 写像の中には推移律により(a,5)も(a,10/2)存在しなければならず、勿論5=10/2ですが、 二組以上存在するのは、確かです。 ということは、教科書の定義が間違っている、ということでしょうか? それとも、私の理屈に何か間違いがあるのでしょうか。。? どなたかよろしくお願いします。

  • 写像についての証明

    写像に関する問題です。 集合A,Bの部分集合をそれぞれA_1,B_1とする。写像f:A→B に対して次の問いを証明しなさい。 問1 写像fが単射ならば、A_1 = f^(-1)(f(A_1 ))である。 問2 写像fが全射ならば、f(f^(-1)(B_1) ) = B_1である。 どなたかご回答の程よろしくお願いします。

  • 順序を保つ写像

    数学初心者です。 2つの半順序集合(X,<),(Y,<<)の間の写像f:X→Yが順序同型写像とは、(a<b⇒f(a)<<f(b))だと学びました。しかし、fの逆写像f^(-1)が順序を保つ、というのは必要でしょうか?定式化して、 「半順序集合(X,<),(Y,<<)の間の写像f:X→Yについて、fが全単射でfが順序を保つ写像であるがf^(-1)は順序を保たない。」 このような例を教えてください。集合の表現は変えてくださって結構です。

  • 集合と写像

    集合と写像の問題です。 A、B:集合、写像:f、逆像:f^-1において以下の性質を証明せよとの問題です。 f(A∩B)⊂f(A)∩f(B) を証明しかつその逆f(A∩B)⊃f(A)∩f(B)が成り立たないことを反例を立てて示せ。 f(A∩B)⊂f(A)∩f(B)の証明は あるx∈A∩B⇒x∈Aかつx∈Bである。 (A∩B)⊂A (A∩B)⊂B より f(A∩B)⊂f(A) かつ f(A∩B)⊂f(B) よって f(A∩B)⊂f(A)∩f(B) で証明できてると思うんですがその逆の反例が思いつきません。 どなたかf(A∩B)⊃f(A)∩f(B) が成り立たないことを示せる方いらっしゃったらご教授願います。

  • 写像と部分集合の関係

    fを集合Aから集合Bへの写像とし、A1,A2をAの部分集合、B1,B2をBの部分集合とし たとき、 f(A1∩A2)⊂f(A1)∩f(A2) と f^(-1)(f(A1))⊃A1 が成り立つそうですが、なぜ f(A1∩A2)=f(A1)∩f(A2) や f^(-1)(f(A1))=A1 とならないのかがわかりません。 (f^(-1)は逆写像です)

  • 離散数学の逆写像に関して

    質問は2つあります。 1つ目の質問 A⊆X、B⊆Yが集合として与えられていて fを写像f:X→Yとする。 集合A⊆Xに対してf(A)={f(x)∈Y | x∈A} 集合B⊆Yに対してf^-1(B)={x∈X | f(x)∈B} が定義されています。 この場合にf^-1(A)はf(A)の逆写像と考えて良いのでしょうか? 定義が f(A)={f(x)∈B | x∈A} f^-1(B)={x∈A | f(x)∈B} であればf( f^-1(x) )が成立するので逆写像は成り立つ。 ここまでが私の頭の考えられる限りです。 2つ目の質問 A⊆Y,B⊆Yとするとき、A⊆Bならば f^-1(A)⊆f^-1(B) を証明せよ。参考書で明らかであるため省略されていて困っています。 よろしくお願いします。

  • 写像と像の関係について

    写像fをf:X→Yとします。すると、像f(X)は以下の条件を満たします。 ∀y∈Y,∃x∈X(y=f(x))⇔f(X)=Y …(1) http://okwave.jp/qa/q3769801.html の、ANo.2を参照すると、 y∈f(X)⇔∃x∈X(y=f(x)) と記述してありますが、恐らくこれは外延性公理(Ext)を示していて、これを"="に直すと、 f(X)={f(x)|x∈X} …(2) と、像f(X)を内包的記法で表す事が出来たと思います。上式の右辺ですが、分出公理(Aus)に拠って導出された物だと思われますが、分出公理 Aus:∀X,∃ξ,∀x(x∈ξ⇔(x∈X∧f(x))) とした時に、 ξ:={x∈X|f(x)} と成り、(2)と集めたい元と条件が逆になっています。(2)は、分出公理からどうやって導出されるのか、それとも違う方法で(置換公理など)導出されるのかを教えて頂ければ幸いです。それが判れば、(1)とぴったり重なって、その上、論理包含で繋がっているのか、又は連言で繋がっているのか も明らかに成ると思います。 宜しくお願いします。