• ベストアンサー

きれいな形の多変数の積分計算。対称的な形のため、簡略化できそう?

atomicmoleculeの回答

回答No.4

問題の本質はx=y, a=bの時の発散ですよね。問題を簡単化して次のような問題を先ず考えてみたらどうでしょうか? f = ∫dx dy da db 1/{(x-y)^2 + (a-b)^2}^(1/2) 積分領域はx=y, a=bを含むところだけが本質でしょうから全て0~1に制限しておきます。 ところでこの積分ベクトル記号を使ってて書くと f= ∫dr1 dr2 1/|r1-r2| r1=(x,a) r2=(y,b) となる2次元ベクトル。 この式更にベクトルの変数変換をすると f=∫dr dr2 1/|r| r1-r2=r , dr=dθ d|r|*|r| と極座標でかくと f=∫dθ d|r| |r| * 1/|r| = ∫dθ ∫d|r| となって積分できそうですね。 まとめるとx=y , a=b となる点からの寄与は積分測度がゼロになるために発散がおさえられるのではないかということですが。積分が測度によって巧く定義されているなら変数変換をして測度を取り出してやると数値計算もできるはずです。がんばってください。 f=0.7433

special90
質問者

補足

年の瀬にありがとうございます。 ベクトルを使うと簡単になるんですねぇ。この方法で少し試させていただきます。2-3日のうちに再びレスできると思います。 しかし不安なのは元の式中のcos内の値をベクトルにした後でどうするか、という問題です。

関連するQ&A

  • 積分計算の矛盾

    y=x^(-1/2)の関数なのですが、 この関数をx=0からx=n(n>0とする)まで積分すると 結果は2√nになるかと思いますが グラフを書いて面積を考えると、無限大に発散する気がします。 しかし計算上は収束します。 これは一体どう理解したらよろしいのでしょうか?

  • 多変数の積分について

    こんにちは。 現在多変数の微積を勉強しているのですが、わからないことがあるので教えてください。 まず、一つ目は広義積分の収束についてです。 ∫D dxdy/(1+x^2+y^2)Dは全平面 という広義積分なのですが、私は極座標変換をした結果この積分は発散すると思うのですがどうでしょうか? もう一つは計算問題です。 ∫D (x+y)^4dxdy D:|x|+|y|≦1 なのですが、上手い変数変換がわからないのです。 とりあえず私はu=x+y,v=x-yと変換したところ答えが2/5とでたのですが、全く自信がありません。 恐れ入りますがご指摘をお願いします。

  • 積分の計算について

    次の計算についての質問ですが・・・ 何気なく計算してて、わからなくなったので、わかる方どうか、お力添えを・・・  ∫(1-y)(a-b)dy の式で,中を積分したとき =1/2(1-y)^2(a-b) と計算するやりかたを教えてください。 あと、先に中を計算してから、積分するやり方の問題点を教えてください。 やさしく教えていただけたら幸いです。

  • 三重積分 (x^2+y^2+z^2)dxdydz

    範囲はこれで与えられています。x^2/a^2+y^2/b^2+z^2/c^2<=1 x=a*r*sinθcosλ y=b*r*sinθsinλ z=c*r*cosθ とおきました。rは0から1まで、θは0からpiまで、λは0から2piまでだと思います。ヤコビアンはabcr^2sinθになります。それを普通に積分していたのですが、答えが合わなかったのです。私のやり方が正しいかどうかだけを教えてほしいです。 よろしくおねがいします

  • 積分計算のヒントを下さい

    突然ですが、以下の式をxとyで積分したいのですが、 上手く計算ができずに滞っています。 ...............N-1 M-1.........................x-nd...............y-md g(x,y) =  Σ  Σ exp{i・A・rect(-----)・rect(-----)} ...............n=0 m=0..........................a...................b N,M,n,m,d,a,b,A:整数 .......は位置合わせのために入れてます。 最終的に三角関数等である程度コンパクトにまとめられれば と考えていたのですが、かなり初期段階から詰まっています。 ヒントだけでも十分ですのでアドバイスお願いします。

  • ループしている積分の解き方

    題では分かりにくいかもしれませんが、周回積分ではありません。 ある関数f(x,y)を求める時に、次の式が与えられています。 f(x,y)=a∫{bz/f(x,y)^2}dz ただし、a,b,cは定数 この積分はcから0までの定積分です。 通常の積分とは異なり、f(x,y)の計算結果を 積分区間内に入れて計算する必要がある為、説き方が全く分かりません。 解き方に手段は問いません。 Mathematicaとかを使ってもいいです。大体の近似だけでもいいです。 ただ、プロット後の近似曲線だけはダメです。 どんな些細なヒントやアイデアでもいいです。 何か思いついた事や知っている事があればよろしくお願いします。

  • 積分計算について

    f(x)は連続で上に凸のグラフで区間b<x<aでf(x)>0とします。 ここでx軸とf(x)と[b,a]で囲まれた面積を求めるとき、f(x)の原始関数をF(x)とすると∫[a,b]f(x)dx=F(a)-F(b) となりますが∫[b,a]f(x)=F(b)-F(a) となり符合が逆になります。 どちらの式も、意味は積分区間bからaで積分なのにどうしてこのようなことが起こるのでしょうか? また、このせいで、面積を求める問題で、3つ以上の関数に囲まれた面積を出すときに符号が逆になり、間違えることが多々あります。 こういうときはどういう計算の仕方をするのが良いでしょうか?まとめて面積を出さずに一つずつ出して、絶対値をとるしかないのでしょうか?

  • 畳み込み積分の数値計算方法

    y(t)=∫f(τ)h(t-τ)dτ, 積分区間 0≦τ≦t. この畳み込み積分のfとhの関数形が具体的にわかっているときに、y(t)の値を求めるにはどうすればいいのでしょうか。積分が解析的な式で表される場合はその式にtの値を代入すれば済むと思いますが、解析的な式でかけない場合は数値計算しないといけないと思います。数値計算はどのようにするのでしょうか? ラプラス変換とかフーリエ変換とか使うのでしょうか? 数値積分をするのでしょうか? 常套手段があると思うので、教えて下さい。

  • bohr&wheeler理論の4次まで考慮した表面エネルギー計算について

    こんにちは、 ロイ=ニガム(28b)式の被積分関数で1/2乗がかかっている部分は  { [1+ΣαlPl]^2 + [ΣαlP'l]^2 }^(1/2) = { 1 + 2ΣαlPl + [ΣαlPl]^2 + [ΣαlP'l]^2 }^(1/2) xが小さい時  √(1+x) = 1 + (1/2)x - (1/8)x^2 + (3/48)x^3 - (5/128)x^4 +… この公式でxに2ΣαlPl + [ΣαlPl]^2 + [ΣαlP'l]^2 を代入し、さらに[1+ΣαlPl]をかけてθで積分すればα2^3もα2^4も出てきます。 とご教示頂き、下記の通り、mathematicaでプログラムを作って計算したのですが、 答えが式(34a)と一致しません。どこが悪いのでしょうか? 下記計算で、変数θを、t=cosθとしたのですが、この箇所のどこかが間違っているような気がするのですが、自分ではよくわかりません。 aP[k_, t_] := Sum[a[n]*LegendreP[n, t], {n, 2, k}]; k = 4; x[t_] := 2*aP[k, t] + aP[k, t]^2 + (1 - t^2)*D[aP[k, t], t]^2; y[t_] := 1 + (1/2)*x[t] - (1/8)*x[t]^2; f[t_] = 2*Pi*R0^2*y[t]*(1 + aP[k, t]); (y1 = Integrate[f[t], {t, -1, 1}] /. R0 -> r0*A^(1/3); ); ExpandAll[y1] 計算結果 4*A^(2/3)*Pi*r0^2 + (16/5)*A^(2/3)*Pi*r0^2*a[2]^2 - (4/35)*A^(2/3)*Pi*r0^2*a[2]^3 - (123/70)*A^(2/3)*Pi*r0^2*a[2]^4 - (16/55)*A^(2/3)*Pi*r0^2*a[2]^5 + 4*A^(2/3)*Pi*r0^2*a[3]^2 - (8/35)*A^(2/3)*Pi*r0^2*a[2]*a[3]^2 -

  • 発散するのに積分可能?

    積分∫∫∫|R|^-2 dxdydz を考えます。 積分領域は全空間とします。 またRは三次元ベクトルでR=(x,y,z)と定義され、|R|はベクトルRの長さとします。 さて、明らかにR=0の点で被積分関数は発散します。 私の式変形が正しいのであれば、球座標変換により、上記の積分は ∫∫∫sin θ drdθdφ = [有限の値] となり、積分可能となります。 私の質問は以下の2つです。 (1)式変形はあってますか? (2)発散するのに有限の値を持つのはなぜ? 例えば1次元の関数 x^-2 を[a,+∞]の範囲で積分することを考えます。 このとき、a->0とすれば積分値はどんどん大きくなります。 同様に考えて、問題の積分の式は発散すると思ったのですが、なぜか有限の値が出てきてしまいました。 球座標系にしたとたんに有限の積分値になってしまうのはなぜなのでしょうか? それとも、私はどこかで大きな勘違いをしているのでしょうか?