• 締切済み
  • 暇なときにでも

約数

与えられた自然数N=(p^l)*(q^m) □で、l,mは0以上の整数について (1)Nの正の約数の個数 (2)Nの正の約数の総和 (1)上記の問題の(1)のNの正の約数の個数が(l+m+1)(l+1)(m+1)となるように□に適する条件を書く問題で 回答はp,Qの最大公約数をrとするとp/r,q/r,rは異なる素数らしいのですがどうしてrを割るのですか? 例えば2つの整数aとbの最大公約数をGとくと、a=a'G,b=b'Gとおける a'とb'は素とするとこうな考えをするのでしょうか? (2)(1)の条件のもとで、(2)を解くと p/r=a,q/r=bとおくと N={(ar)^l}*{br}^m =(a^l)*(b^m)*r^(l+m) Nの正の約数の総和は S=((a^0)+(a^1)+…(a^l)) ((b^0)+(b^1)+…(a^m)) ((r^0)+(r^l)+…(r^(l+m))) から {1-a^(l+1)}/1-a * {1-b^(m+1)}/1-b *{1-r^(l+m+1)}/1-r になることわ分かりません。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数226
  • ありがとう数0

みんなの回答

  • 回答No.1
  • thetas
  • ベストアンサー率48% (27/56)

>(1)上記の問題の(1)のNの正の約数の個数が(l+m+1)(l+1)(m+1)となるように□に適する条件を書く問題で >回答はp,Qの最大公約数をrとするとp/r,q/r,rは異なる素数らしいのですがどうしてrを割るのですか? 例、(6^4)*(15^3)の約数について、  6と15の最大公約数は3なので、  {(2*3)^4}*{(3*5)^3}=(2^4)*(5^3)*{3^(4+3)}  とできます。  一般化して、p/r,q/r を(2)の解答のように、a,bとおくと、 N=(p^l)*(q^m)={(a*r)^l}*{(b*r)^m}=(a^l)*(b^m)*{r^(l+m)}  とできるからですね。  まぁ、 >例えば2つの整数aとbの最大公約数をGとおくと、a=a'G,b=b'Gとおける  という発想でいいのではないかと思います。 >Nの正の約数の総和は >S=((a^0)+(a^1)+…(a^l)) >((b^0)+(b^1)+…(a^m)) >((r^0)+(r^l)+…(r^(l+m))) >から >{1-a^(l+1)}/1-a * {1-b^(m+1)}/1-b *{1-r^(l+m+1)}/1-r これは、等比数列の和の公式を使っています。 (現課程の教科書では、数学Bにあります)

共感・感謝の気持ちを伝えよう!

質問者からの補足

解説ありがとうございます。 (1)でp,qの最大公約数をrとするとp/r,q/r,rは異なる素数と考えるのが分かりません。 約数の個数が(l+m+1)(l+1)(m+1)とどのように導くのでしょうか?

関連するQ&A

  • 最大約数

    与えられた自然数N=(p^l)*(q^m) □で、l,mは0以上の整数について (1)Nの正の約数の個数 (2)Nの正の約数の総和 (1)上記の問題の(1)のNの正の約数の個数が(l+m+1)(l+1)(m+1)となるように□に適する条件を書く問題で 回答はp,Qの最大公約数をrとするとp/r,q/r,rは異なる素数らしいのですがどうしてrを割るのですか? (2)(1)の条件のもとで、(2)を解くと p/r=a,q/r=bとおくと N={(ar)^l}*{br}^m =(a^l)*(b^m)*r^(l+m) Nの正の約数の総和は S=((a^0)+(a^1)+…(a^l)) ((b^0)+(b^1)+…(a^m)) ((r^0)+(r^l)+…(r^(l+m))) から {1-a^(l+1)}/1-a * {1-b^(m+1)}/1-b *{1-r^(l+m+1)}/1-r になりますが 等比数列の和を利用して{1-a^(l+1)}/1-a になるそうですが(l+1)がどのようにして現れたのか分かりません。

  • ユークリッドの互除法で最大公約数を求める

    <問題> n^2+2n+1とn+3の最大公約数になりうる値をすべて求めよ <解答> 整数a,bに対してa,bの最大公約数をg(a,b)とあらわす。 g(n^2+2n+1,n+3)=g(n+3,4) 4の正の約数は1,2,4であるから、g(n+3,4)として考えうるのも1,2,4である。 例えば、 n+3=5 すなわちn=2のとき、g(5,4)=1 n+3=6 ・・・ g(6,4)=2 n+3=8 ・・・ g(8,4)=4 となり、最大公約数として可能な数は1,2,4の3つの自然数である。 <質問> 「g(n+3,4)として考えうるのも1,2,4である。」 が必要条件であることはわかります。 その後、解答でなにがしたいのかよくわかりません。 なぜ例示しただけで「最大公約数として可能な数は1,2,4の3つの自然数である。」といえるのでしょうか? よろしくお願いします。 <思ったこと> 必要十分条件なら「g(n+3,4)として考えうるのも1,2,4である」場合、「4の正の約数は1,2,4である」であることを示すことになると思います。

  • 約数、倍数の問題

    「0<a<150であるような整数Aがある。Aと42の最大公約数は6,Aと32の最大公約数は8であるという。このときAの個数はいくらか。」という問題があります。この問題の解説に、「Aと42の最大公約数は6=2×3であり、Aと32の最大公約数は8=23であるから、A=23×3×X=24X(Xは整数) と表すことが出来る」と載っているのですが、どうしてこう表せるのか理解できません。どなたか教えて下さい。

  • 整数問題

    正の整数nに対して、1以上n以下の整数で、nとの最大公約数が1 になるもののすべての和をs(n)とするとき、s(n)が素数となるすべての nを求めよ。 n=3以外にはないように思いますが、答えはあっているでしようか。 考え方はnとaが互いに素の場合、nとn-aも互いに素であることを 使いました。

  • 最小公倍数と互いに素

    A、B、C・・・の最大公約数を(A、B、C・・・)最小公倍数を[A、B、C・・・]で表します。(例)(4165、6035)=85 [4165、6035]=295715 A、Bが互いに素 (A、B)=1 お願いします。分からないのは約数を持つか判定するところです。問題は、 0<a<b<cを満たす3個の整数a、b、cがある。次の関係を同時に満たすa、b、cを求めよ。 (1)a、b、cの最大公約数は45である。 (2)bとcの最大公約数は225、最小公倍数は1350である。 (3)aとbの最小公倍数は3150である。 解答 条件(1)より a=45a'、b=45b'、c=45c'(a'、b'、c'は整数)・・・[1]とおくと、 (a'、b'、c')=1、 0<a'<b'<c'・・・[2] 条件(2)より(b、c)=45(b'、c')=225 ∴(b'、c')=5・・・[3] [b、c]=45[b'、c']=1350 ∴[b'、c']=30・・・[4] [3]よりb'=5b''、c'=5c''とおけば (b''、c'')=1 ・・・[5] で[4]より 5[b''、c'']=30 ∴ [b''、c'']=6・・・[6] b<cよりb''<c''これと[5]、[6]より b''=1、c''=6 または b''=2、c''=3 (イ)b''=1、c''=6のとき b=45*5*1=225、 c=45*5*6=1350 条件[3]より[a、b]=[45a'、225]=45[a'、5]=3150 ∴[a'、5]=70 70=2*5*7より  a'は2、5、7のうち1つ以上の約数をもつ。・・・[7] ここで条件[2]より0<a'<5、そしてa'が約数2をもつとすると、a'=2a''となる整数a''がある。0<a'<5に代入して、0<2a''<5 ∴0<a''<5/2より a''=1または2 [a'、5]=70に代入すると、[2,5]=70または[4,5]=70となり矛盾。a'が約数2をもたない。 よって(a'、2)=1。 同様にしてa'=5a''のとき、0<5a''<5 ∴ 0<a''<1 より 条件を満たす整数a''はないa'が約数5をもたない。 (a',5)=1。 最後にa'=7a''のとき、0<7a''<5 ∴ 0<a''<5/7 より条件を満たす整数a''はない a'が約数7をもたない。(a'、7)=1。 でもこれらa'は2、5、7を約数を持たないという結果 (a'はそれぞれの数と互いに素)は、[7]に矛盾します。またA、Bの最大公約数をG、最小公倍数をLとするとAB=GLからa'を求めると、[a'、5]=70、(a',5)=1より 5a'=70*1 より a'=14=2*7 とa'は2、7を約数に持ち。途中の計算と矛盾します。また、このa'=14という数は問題の答えに不適なので、そのあたりが矛盾につながったのかもしれません。 どなたかこの矛盾点を解決し、a'は2と7を約数に持つことをしるしてください。お願いします。解答は続けて、このときa=45*14=630>225=bとなり不適。 (ロ)b''=2、c''=3のときb=45*5*2=450、c=45*5*3=675 条件[3]より[a、b]=[45a'、450]=45[a'、10]=3150 ∴[a'、10]=70 b"=2だからb'=5b"=5*2=10だからb'=10 0<a'<b'<c'…[2] から0<a'<b'=10だから0<a'<10。[a',10]=70だからa'は70=2*5*7の約数 a'=2a"となる整数a"があると仮定すると 0<2a"<10∴0<a"<5 [a',10]=[2a",10]=2[a",5]=70 35=[a",5]≦5a"<25 となって矛盾するから (a',2)=1 a'=5a"となる整数a"があると仮定すると 0<5a"<10 0<a"<2 a"=1 a'=5 70=[a',10]=[5,10]=10 となって矛盾するから (a',5)=1 {(a',2)=1}&{(a',5)=1}だから(a',10)=1∴a'=7 またb'=10、c'=15だからこれらは[2]の条件を満たしている。a=45*7=315 答え a=315、b=450、c=675

  • 高校数学A ユークリッドの互除法についてです。

    こんにちは。高校数学A、ユークリッドの互除法についてです。 問題集の 整数aを正の整数bで割った余りをrとする。aとbの最大公約数はbとrの最大公約数と一致することを証明せよ。 という問題の解説で aをbで割った商をqとすると a=bq+r aとbの最大公約数をg1、bとrの最大公約数をg2とし、 a=a'g1:b=b”g2,r=r'とする。 ただし、a',b',b”,r'は整数で、a'とb',b”とr'はそれぞれ互いに素である。このとき、 r=a-br=a'g1-b'g1q=(a'-b'q)g1 a'-b'rは整数であるから、g1はrの約数、★すなわちbとrの公約数になる。 以下略 この★の部分がわかりません。 g1がrの約数になると bとrの公約数とも言える理由は何なのでしょうか? どなたかよろしければ ご教授お願い致します。

  • 高校数学の問題です。

    1からnまでの自然数のうちで、nと互いに素であるものの個数をZ(n)とする。 ただし、自然数aとbが互いに素であるとは、aとbの最大公約数が、1になることである。 (1) Pを素数、kを自然数とするとき、Z(P^k)を求めよ。 (2)z(100)を求めよ。 どちらかだけでも良いです。困っています。 宜しくお願い致します。

  • 約数の総和についての問題です!

    17640の正の約数のうち、15で割りきれないものの総和をお願いします! 正の約数の個数は72個、単なる約数の総和は66690まで出せたのですがここからがわかりません! 回答お願いします!

  • 約数の個数

    私が今使っている参考書の数Aのテーマの一つで「約数の個数」というものがあり、解説として  自然数Nの素因数分解が   N=p^a*q^b*r^c(←pのa乗×qのb乗×rのc乗) であれば、Nの正の約数の個数は    (a+1)(b+1)(c+1)個である この公式の補足説明の中に、  ここでは、正の約数の個数だから上の数となったが、「Nの約数となる整数」というときには、負の約数も考える必要があるから、さらに上の数の2倍で、2(a+1)(b+1)(c+1)である という解説がでていました。  負の約数 という概念がわかりません。どういうもなのでしょうか。よろしくお願いします。 なお、この参考書は、受験用の公式集です。

  • 約数の総和

    正の整数AがPのk乗qのl乗rのm乗と素因数分解されるとき、Aの正の約数の総和は (1+P+・・・+Pのk乗)(1+q+・・・qのl乗)(1+r+・・・+rのm乗) と表されるのはなぜですか? 総和なので ()+()+()ではないかと思いました。