• ベストアンサー
  • 暇なときにでも

最大約数

与えられた自然数N=(p^l)*(q^m) □で、l,mは0以上の整数について (1)Nの正の約数の個数 (2)Nの正の約数の総和 (1)上記の問題の(1)のNの正の約数の個数が(l+m+1)(l+1)(m+1)となるように□に適する条件を書く問題で 回答はp,Qの最大公約数をrとするとp/r,q/r,rは異なる素数らしいのですがどうしてrを割るのですか? (2)(1)の条件のもとで、(2)を解くと p/r=a,q/r=bとおくと N={(ar)^l}*{br}^m =(a^l)*(b^m)*r^(l+m) Nの正の約数の総和は S=((a^0)+(a^1)+…(a^l)) ((b^0)+(b^1)+…(a^m)) ((r^0)+(r^l)+…(r^(l+m))) から {1-a^(l+1)}/1-a * {1-b^(m+1)}/1-b *{1-r^(l+m+1)}/1-r になりますが 等比数列の和を利用して{1-a^(l+1)}/1-a になるそうですが(l+1)がどのようにして現れたのか分かりません。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数326
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

こういうのは実際にやってみるに限ります。 (1) 約数の個数の求め方 Nを素因数分解します。 素因数をいくつずつかけるかの組み合わせが約数の個数になります。 72=2^3*3^2 3を0個・2を0個~3個 1,2,4,8 3を1個・2を0個~3個 3,6,12,24 3を2個・2を0個~3個 9,18,36,72 つまり、(3+1)*(2+1)=12 問題文のp,qは素数とは限らないので、さらに素因数分解をする必要があります。 たとえばN=10^3*15^2として、素因数分解し、数えてみてください。 (2) (1-a)(1+a^2+a^3)、(1-a)(1+a^2+a^3+a^4)、(1-a)(1+a^2+a^3+a^4+a^5) 上記をそれぞれ展開してみてください。これを(1-a)で割っているのです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

N=10^3*15^2の場合rが5になるんですね。 やっと分かりました。 ありがとうございます。

関連するQ&A

  • 約数

    与えられた自然数N=(p^l)*(q^m) □で、l,mは0以上の整数について (1)Nの正の約数の個数 (2)Nの正の約数の総和 (1)上記の問題の(1)のNの正の約数の個数が(l+m+1)(l+1)(m+1)となるように□に適する条件を書く問題で 回答はp,Qの最大公約数をrとするとp/r,q/r,rは異なる素数らしいのですがどうしてrを割るのですか? 例えば2つの整数aとbの最大公約数をGとくと、a=a'G,b=b'Gとおける a'とb'は素とするとこうな考えをするのでしょうか? (2)(1)の条件のもとで、(2)を解くと p/r=a,q/r=bとおくと N={(ar)^l}*{br}^m =(a^l)*(b^m)*r^(l+m) Nの正の約数の総和は S=((a^0)+(a^1)+…(a^l)) ((b^0)+(b^1)+…(a^m)) ((r^0)+(r^l)+…(r^(l+m))) から {1-a^(l+1)}/1-a * {1-b^(m+1)}/1-b *{1-r^(l+m+1)}/1-r になることわ分かりません。

  • ユークリッドの互除法で最大公約数を求める

    <問題> n^2+2n+1とn+3の最大公約数になりうる値をすべて求めよ <解答> 整数a,bに対してa,bの最大公約数をg(a,b)とあらわす。 g(n^2+2n+1,n+3)=g(n+3,4) 4の正の約数は1,2,4であるから、g(n+3,4)として考えうるのも1,2,4である。 例えば、 n+3=5 すなわちn=2のとき、g(5,4)=1 n+3=6 ・・・ g(6,4)=2 n+3=8 ・・・ g(8,4)=4 となり、最大公約数として可能な数は1,2,4の3つの自然数である。 <質問> 「g(n+3,4)として考えうるのも1,2,4である。」 が必要条件であることはわかります。 その後、解答でなにがしたいのかよくわかりません。 なぜ例示しただけで「最大公約数として可能な数は1,2,4の3つの自然数である。」といえるのでしょうか? よろしくお願いします。 <思ったこと> 必要十分条件なら「g(n+3,4)として考えうるのも1,2,4である」場合、「4の正の約数は1,2,4である」であることを示すことになると思います。

  • 約数、倍数の問題

    「0<a<150であるような整数Aがある。Aと42の最大公約数は6,Aと32の最大公約数は8であるという。このときAの個数はいくらか。」という問題があります。この問題の解説に、「Aと42の最大公約数は6=2×3であり、Aと32の最大公約数は8=23であるから、A=23×3×X=24X(Xは整数) と表すことが出来る」と載っているのですが、どうしてこう表せるのか理解できません。どなたか教えて下さい。

  • 約数の総和についての問題です!

    17640の正の約数のうち、15で割りきれないものの総和をお願いします! 正の約数の個数は72個、単なる約数の総和は66690まで出せたのですがここからがわかりません! 回答お願いします!

  • 約数の個数

    私が今使っている参考書の数Aのテーマの一つで「約数の個数」というものがあり、解説として  自然数Nの素因数分解が   N=p^a*q^b*r^c(←pのa乗×qのb乗×rのc乗) であれば、Nの正の約数の個数は    (a+1)(b+1)(c+1)個である この公式の補足説明の中に、  ここでは、正の約数の個数だから上の数となったが、「Nの約数となる整数」というときには、負の約数も考える必要があるから、さらに上の数の2倍で、2(a+1)(b+1)(c+1)である という解説がでていました。  負の約数 という概念がわかりません。どういうもなのでしょうか。よろしくお願いします。 なお、この参考書は、受験用の公式集です。

  • 約数の総和

    正の整数AがPのk乗qのl乗rのm乗と素因数分解されるとき、Aの正の約数の総和は (1+P+・・・+Pのk乗)(1+q+・・・qのl乗)(1+r+・・・+rのm乗) と表されるのはなぜですか? 総和なので ()+()+()ではないかと思いました。

  • 約数の個数と公倍数の個数から元の数を求める

    a,b,c,d を自然数とし a>=c とする。m=2^a3^b 、n=2^c3^d についてm、nの正の約数の個数が80.72でm、nの正の公約数の個数が45であるという。a,b,c,d を求めなさい。 という問題なのですが、(a+1)(b+1)=80 (c+1)(d+1)=72 まで分かるのですがそれ以降がまったく思いつきません。どなたか、公約数の数とどう絡むのか、お教え下さい。お願いします。 PS ちなみみ^a としているのは2のa乗の意味です。

  • 約数について

    300以下の自然数のうち正の約数が8個である数の個数を求めていただけないでしょうか。

  • 数列の問題を教えてください

    数列が苦手で、解法が分かりません。 下記の問題の解答を教えてください。 お願いします。 1.n を自然数とする。   3^n のすべての正の約数の和が3280になるときの n を求めよ。   ≪答:7≫ 2.-1<a<0<b とする。   3数 -1,a,b は適当な順に並べると等差数列になる。   また、ある順に並べると等比数列にもなる。    このときの a,b を求めよ。   ≪答:a=-1/4, b=1/2≫ 3.3ケタの正の奇数の2乗の和を求めよ。   ≪答:166499850≫ よろしくお願いします。

  • 約数の総和の問題です

    「kが正整数で2^k - 1が素数であるとする。a=2^k-1(2^k - 1)のすべての約数(1とaを含む)をa[1]a[2]・・・・・a[n]とするとき、Σ(from i to n)1/a[i] を求めよ。」 という問題なのですが、2^k - 1が素数だから、kは任意の正の整数ではないですよね。例えばk=4のときは、2^k - 1=15となってしまって素数ではなくなりますよね。そう考えていくと、問題自体が成立しないように思えてくるのですが、どう考えればよいのでしょうか。よろしくお願いします。