• 締切済み
  • 困ってます

2物体の連成振動

理系大学一年です。物理の問題で不明な点があります。 壁|∞●∞●∞|壁 (ただし∞はバネ、●は質点を表す) バネ定数は左からk1,k2,k3 質点の質量は左からm1,m2です。 この力学系の縦振動の基準各振動数ω1,ω2と、各々の基準各振動について二個の質点の変位の振幅の比を求めよ(ただし、両質点の位相は同位相か逆位相とせよ)という問題です。 m1、m2の変位をそれぞれx1,x2としてまず、運動方程式をたてました。 (m1)かけるx1ツードット=-(k1)(x1)-k2(x1-x2) (m2)かけるx2ツードット=-(k2)(x2-x1)-(k3)(x2) そして、一般解をx1=C1 cos(ωt+α)  x2=C2 cos(ωt+α)と置き、 運動方程式にそれぞれ代入しました。 すると、次の式が得られました。 -(m1)(ω^2)(C1)=-(k1+k2)C1+(K2)(C2) -(m2)(ω^2)(C2)=(k2)(C1)-(k2+k3)C2 そして、行列式(左上、右上、左下、右下の順で (k1+k2)-(m1)(ω^2)、-k2、-k2、(k2+k3)-(m2)(ω^2))が0になるという条件を用いて、ω^2=pとおいて、pについて解の公式を用いて出すと 二次方程式が解けません。ルートの中身(b^2-4ac)が(なんか)の二乗になればいいのですが。 一カ所符号が違えば、きれいにルートが外せる気がします。 そうするとω^2=(k1+k2)/m1,(k2+k3)/m2となるのですが、 納得がいかず、先に進めません。 いままでのところでおかしい部分があるのでしょうか。 お忙しいとは思いますが、ご教授ください。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数1
  • 閲覧数1509
  • ありがとう数2

みんなの回答

  • 回答No.1
  • ryn
  • ベストアンサー率42% (156/364)

これだけ質量もばね定数もバラバラだと きれいにならなくても仕方ないと思います. 解の公式を用いてωを求めたなら ルートが外れなくてもよいのではないでしょうか. ただ, > (m1)かけるx1ツードット=-(k1)(x1)-k2(x1-x2) は右辺第2項目が符号間違いです.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 そうですね。どうがんばってもきれいになりませんでした。 綺麗な式にならない場合のほうが多いようですね。

関連するQ&A

  • 連成振動の力学的エネルギーについて

    物理学で出題された連成運動の問題の解法がわかりません。 連成振動の問題では、固有値を用いて解くと教わったのですが、2つの運動方程式を 行列表示にできません。どの様に解けばよいのでしょうか。ご意見よろしくお願いします。 [問題] 左から「壁|バネ1+物体1+バネ2+物体2」となっている連成振動で、 物体1,物体2の質量をm1,m2、バネ1,バネ2のバネ定数をk1,k2、バネ1,バネ2の自然長をl1,l2 の条件のもと、1次元的に振動する運動をします。質点と床の間の摩擦や空気抵抗、バネの質量 は無視できるものとし、左端の壁からそれぞれの質点までの距離をx1,x2としてこの質点系の 力学的エネルギーの式を導け。

  • 振動です

    図のように、2つのばねk1,k2と2つの質量m1,m2がとり付けられています。xo(t)=Xosinωtで支持部が変位するとき (1)この振動系の運動方程式を導出しなさい 私の回答 m1(d^2 x1 /dt^2)=-k1(x1-xo)+k2(x2-x1) と m2(d^2 x2 /dt^2)=-k2(x2-x1) (2)k1=2k , k2=k ,m1=m ,m2=m/2 の時、設問(1)の運動方程式はどう書き直せるか。ωo=√(k/m)を用いて記述せよ 私の回答 (d^2 x1 /dt^2)=-2(ωo^2)(x1-xo)+(ωo^2)(x2-x1) (d^2 x2 /dt^2)=-2(ωo^2)(x2-x1) (3)ωo=1rad/sのとき、設問(2)の運動方程式を用い、固有角振動数ωnを求めよ。 この問題を見た瞬間、あれωoが(不減衰)固有角振動数でないの?って思いました。ωoとωn何が違うのですか? それと設問(1)(2)は正しいですか?教えてください

  • 連成振子

    ~~はバネ定数がすべてkのばね、○は左から順に質量m1,m2,m3の質点としてください。 下図の時、この振子の振動をx軸方向の一次元運動とし、3つの質点の座標をx1,x2,x3として解きたいのですが、まず3つの質点の運動方程式をたてなければならないことは分かっているのですが、バネが多すぎてどのようになるのかよく分かりません。一体どうなるのでしょうか?  壁―~~―○―~~―○―~~―○―~~―壁

  • 単振動の解

    自然の長さl, ばね定数k のばねの下端に質量mの質点をつるす。上端を鉛直方向に動かし、変位がacosωtとなる振動を与える。運動方程式の解を求めよ。ただし、ω≠√(k/m) とする。 という問題で、鉛直方向に動かしている時の質点の自然長からの変位をxとすると、 mx''=-kx + mg となるので 解は、 x=Acos(ω0t+α) + mg/k だと思ったのですが、 答えは x=Acos(ω0t+α) +{aω0^2cosωt/(ω0^2 - ω^2)} + l + (mg/k) となっていました。 変位を acosωt にするということが関係すると思うのですが、どう扱えば良いのかよく分かりません。 なぜこうなるのでしょうか?

  • 振動の問題です

    分からないので教えて頂けると助かります。 N個の質量mの質点がバネ定数kのバネで一列につながっているとする。 j番目の釣り合いの位置からの変位をx_jと表す。 j番目の質点の運動方程式は (d/dt)^2(x_j)=-ω^2(2x_j-x_(j+1)-x_(j-1)) と表される。 ここで、x_0=0,x_N+1=0,ω=√(k/m)である。 x_j=Asin(kj)+Bcos(kj)として運動方程式を解き、基準振動の振動数を求めよ。

  • 振動の問題です

    以下の問題を自分で解いてみました 答えはあっていますか?  図のように、質量mの質点が、ばね定数kの二つのばね、および減衰係数cのダッシュポットに支えられている。ばねの質量は無視できるとして、以下の設間(1)~(4)に答えなさい。 (1)つりあい位置からの質点の変位をx(t)として、この系の運動方程式を求めなさい (2)c=0のときの系の固有円振動数ωoを求めなさい。 (3)この系の臨界減衰係数c_cを求めなさい。 (4)初期変位x(0)=x。、初期速度dx(0)/dt(0)=0が与えられたときの系の自由振動を求めなさい。 (1)md^2x(t)/dt^2=-cdx(t)/dt-kx(t) (2)ω。=√k/m (3) ζ=c/c_c 臨界減衰なのでζ=1 ∴c_c=c (4) (1)の微分方程式を解くと x(t)=-ctx(t)/m-kx(t)t^2/2m+x。t+x。

  • 2つのバネからなる質点系の位置エネルギー

    大学で物理学を学んでいる者です。 1次元のポテンシャルエネルギーUは U=-∫Fdxであることを習ったのですが、ある問題でつまずきました。それは、 壁-バネ定数k1のバネ-質量m1の質点-k2のバネ-m2の質点 において、m1の質点の変位をx1、m2の質点の変位をx2とおいたとき、2つの質点のポテンシャルエネルギーの和を求める問題です。抵抗力やバネの質量は考えなくてよく、基準はどこに取ってもよいということでした。解答は(k1*x1^2)/2+(k2*(x2-x1)^2)/2となっていましたが、この場合、U=-∫Fdxの式から解答を導くにはどのようにしたらよいでしょうか。 自分で解こうとしたところ、基準を、釣り合いの位置におけるm1の位置としたとき、m2の積分範囲はどうなるのかが分からなくて、最後まで計算できませんでした。 ご意見よろしくお願いします。

  • 連成振動に関する質問です

    連成振動に関する質問です 鉛直方向にk1、m、k2、M の順にばねと重りがつなげられている問題なのですが(ばね定数と質量を表します。mのほうをA、MのほうをB) 下向きを正とするとき ・運動方程式は mYa'' = -(k1 + k2)Ya + k2Yb MYb'' = -(k1 + k2)Yb で大丈夫ですか? ・この振動の固有振動数と固有振動モードの求め方を教えてください。 検索したのですが、いまいち固有振動モードという考え方がわかりません。

  • 物理のバネの問題教えてください

    質点1と質点2が3つのバネでつながれている。 2つの質点はともに m 、3つのバネはともに自然長で l 、バネ定数は k である。 時刻t=0で質点は静止しているが、平行の位置からの変位は、x1(0)=a、x2(0)=bただし、0<a<bである。 質点1,2の運動は平行位置からの変位x1,x2で表す。(右向きが正) (1)質点1、質点2の運動方程式は? (2)y1=x1+x2、y2=x1-x2とする。y1、y2を満たす微分方程式は? (3)y1、y2の角振動数をそれぞれω1、ω2としたとき、ω2/ω1も値は? (4)y1*y2の方程式を解く (5)x1、x2を求める (1) mx1"=-kx1+k(x2-x1) mx2"=-kx2-k(x2-x1) で正しいですか? (2)(1)をy1、y2を使い、表したらいいのですか? (3)~(5)は分かりません。 解き方を教えてください。    バネ定数k 質点1      質点2           |―∨∨∨∨―●―∨∨∨∨―●―∨∨∨∨―|  

  • 強制振動

    壁にばね定数kのばねを取り付け、ばねのもう一方の端には質量mの 質点を取り付けます。壁は、y=acosωtで調和変位します。   | 壁|--/\/\/--○   |   ばね   質点 上図のような感じになっています。 このときの質点の強制振動の解は、(水平右方向をx軸の正として) x=kacosωt/(k-mω^2)となりますが(k≠mω^2のとき)、 ここでk=0とすると、x=0となってしまいます。 こうすると壁が変位しているのに質点は変位しないということになり おかしくなってしまいます。 たぶんどこかで私の考えがおかしいのだと思いますが、どこがおかしいのでしょうか? 強制振動の解xが、壁に対する相対変位だということならば k=0のときx=0でも違和感はないのですが・・・