• 締切済み
  • すぐに回答を!

振動の問題です

分からないので教えて頂けると助かります。 N個の質量mの質点がバネ定数kのバネで一列につながっているとする。 j番目の釣り合いの位置からの変位をx_jと表す。 j番目の質点の運動方程式は (d/dt)^2(x_j)=-ω^2(2x_j-x_(j+1)-x_(j-1)) と表される。 ここで、x_0=0,x_N+1=0,ω=√(k/m)である。 x_j=Asin(kj)+Bcos(kj)として運動方程式を解き、基準振動の振動数を求めよ。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数1
  • 閲覧数489
  • ありがとう数1

みんなの回答

  • 回答No.1

その通り代入すればよいです。右辺の計算の前に次の公式を確認します。 sin(k(j+1))=sin(kj)cos(k)+cos(kj)sin(k), cos(k(j+1))=cos(kj)cos(k)-sin(kj)sin(k) sin(k(j-1))=sin(kj)cos(k)-cos(kj)sin(k), cos(k(j-1))=cos(kj)cos(k)+sin(kj)sin(k) 右辺=-ω^2{2Asin(kj)+2Bcos(kj)-Asin(kj)cos(k)-Acos(kj)sin(k)-Bcos(kj)cos(k)+Bsin(kj)sin(k) -Asin(kj)cos(k)+Acos(kj)sin(k)-Bcos(kj)cos(k)-Bsin(kj)sin(k)} =-ω^2[sin(kj){2A-Acos(k)+Bsin(k)-Acos(k)-Bsin(k)}+cos(kj){2B-Asin(k)-Bcos(k)+Asin(k)-Bcos(k)} =-ω^2[sin(kj){2A-2Acos(k)}+cos(kj){2B-2Bcos(k)}] =-2ω^2(1-cos(k))(Asin(kj)+Bcos(kj) ...(i) さてここでcos(k)=cos^2(k/2)-sin^2(k/2)=1-2sin^2(k/2)、すなわち 1-cos(k)=2sin^2(k/2)...(ii) を知っていれば(i)は (i)=-4ω^2sin^2(k/2)(Asin(kj)+Bcos(kj)=-4ω^2sin^2(k/2)(x_j)...(iii) となります。 即ちもとの式は (d/dt)^2(x_j)=-4ω^2sin^2(k/2)(x_j)=-(2ωsin(k/2))^2(x_j)...(iv) となります。これはx"=-(k^2)xという単振動の式で解は x=Asin(kt)+Bcos(kt) となり振動数fは f=k/2π となります。(iv)で言えば f=(1/2π)(2ωsin(k/2)) です。角振動数ならばこれの2π倍ですから F=2ωsin(k/2) となります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました!

関連するQ&A

  • 物理 単振動

    ばね定数kのばねに質量mの小球をつけ、水平で滑らかな床の上に置き、ばねの他端を固定した。小球は質点とする。次に小球を手でつかみ、ばねを伸ばして手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として振動の中心を原点とする。このとき、小球の運動方程式はm((d^2x)/(dt^2))=ーkxと書ける。小球の変位はこの運動方程式の解として与えられx=Asinωt+Bcosωtと書ける。ただし、ωは角振動数であり、A,Bは初期条件で決定される定数とする。 (1)運動方程式よりx=Asinωt+Bcosωtを導出せよ。 (2)解を運動方程式に代入するとωをmとkで表すことができる。その式を求めよ。 (3)小球は時刻t=0のとき、原点x=0を速度voで通過した。この時の、AとBを求めよ。 (4)ばね定数kおよびばね定数2kのばねを小球の両側に一直線となるようにつけ、それぞれのばねが自然の長さとなった状態で固定した。次に小球を手でつかみ、ばねの長さに沿って移動させて手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として、振動の中心を原点とする。このときの運動方程式を求めよ。 特に(3),(4)がわかりません。(1)~(4)どれでも構いませんので回答よろしくお願いします。 もちろん、(1)~(4)を教えてくださると大変助かります。 よろしくお願いします。

  • 大学の数学の勉強をしていてどうしても分からない問題があるので教えてください。

    運動方程式まででも良いのでお願いします。 同じ質量mを持つ3つの質点A、B、Cが直線上に左から右へと並んでおり AとB、BとCはバネ定数kのバネで繋がれている。 さらにAは左側の壁と、Cは右側の壁との間にもバネ定数kのバネで繋がれている。 (重力は考えなくてよい) (1) A、B、Cそれぞれの釣り合いの位置からの変位をx1、x2、x3とする。 A、B、Cそれぞれの運動方程式(微分方程式)を書き下ろし ω=k/mX=(x1 x2 x3) として3つの運動方程式を((d^2)X)/(dt^2) = -(ω^2)AX の形にまとめると、 A=( 2 -1 0 -1 2 -1 0 -1 2 ) となることを示せ。 (2) この系の固有振動の振動数と各固有振動における各質点の相対的変位 (振動モード) を求めよ。

  • 振動の問題です

    以下の問題を自分で解いてみました 答えはあっていますか?  図のように、質量mの質点が、ばね定数kの二つのばね、および減衰係数cのダッシュポットに支えられている。ばねの質量は無視できるとして、以下の設間(1)~(4)に答えなさい。 (1)つりあい位置からの質点の変位をx(t)として、この系の運動方程式を求めなさい (2)c=0のときの系の固有円振動数ωoを求めなさい。 (3)この系の臨界減衰係数c_cを求めなさい。 (4)初期変位x(0)=x。、初期速度dx(0)/dt(0)=0が与えられたときの系の自由振動を求めなさい。 (1)md^2x(t)/dt^2=-cdx(t)/dt-kx(t) (2)ω。=√k/m (3) ζ=c/c_c 臨界減衰なのでζ=1 ∴c_c=c (4) (1)の微分方程式を解くと x(t)=-ctx(t)/m-kx(t)t^2/2m+x。t+x。

  • 振動

     |   つりあいの位置  |   k 壁|/\/\/\/\/ー○  | :→   m  | : x これは机の上に置かれた球とばねを上から見た図であり、 球と壁はばねで繋がれているため、球はばねによってxの方向に振動する 球の質量をm、ばね定数をkとする。ここでは簡単のため球と机の抵抗はないものとする。 このときの球の振動について考えてみよう。 問題1、 つりあいの位置を原点とし質点の変位(ばねの伸び)をxとするとき、 質点がばねから受ける力Fを示せ。 次に運動方程式について考える。まず力Fを受ける質点の運動方程式は          ma=F       ・・・(1) である。ここでaは加速度を表す。また加速度は質点の変位を時刻tで 二回微分した関数である。つまり、          a=dの2乗x/dtの2乗 ・・・(2) である。 問題2、質点の運動方程式をm,x,kを用いて表せ。 今質量mとばね定数kが与えられているとすると問題2で求めた方程式では、tの関数x(t)は未知である。 このように未知の関数の微分を含む方程式を微分方程式という。 問題3 関数          x(t)=C1coswt+C2sinwt ・・(3) が問題2の式を満たすようにwを決定せよ。  つまり関数x(t)=C1coswt+C2sinwtは問題2の微分方程式の解となる。 まだC1とC2の値を決めていないが、C1,C2がどのような値でも、 式(3)は微分方程式の解となることがわかる。このように、微分方程式は無数の解を持ち、解を一つ決定するためには他の基準が必要となる。 問題4 手で球をx=aの位置で固定させておき、時刻t=0で手を離した。 解x(t)を決定せよ。  (ヒント:t=0のとき速度dx/dtは0) このように時刻0での状態により解が一つ決定する。 問題4で求めた解x(t)は時刻tでの質点の位置を表す。 何方か助けて下さい。高校で物理とってなかったので分かりません。

  • 物理のバネの問題教えてください

    質点1と質点2が3つのバネでつながれている。 2つの質点はともに m 、3つのバネはともに自然長で l 、バネ定数は k である。 時刻t=0で質点は静止しているが、平行の位置からの変位は、x1(0)=a、x2(0)=bただし、0<a<bである。 質点1,2の運動は平行位置からの変位x1,x2で表す。(右向きが正) (1)質点1、質点2の運動方程式は? (2)y1=x1+x2、y2=x1-x2とする。y1、y2を満たす微分方程式は? (3)y1、y2の角振動数をそれぞれω1、ω2としたとき、ω2/ω1も値は? (4)y1*y2の方程式を解く (5)x1、x2を求める (1) mx1"=-kx1+k(x2-x1) mx2"=-kx2-k(x2-x1) で正しいですか? (2)(1)をy1、y2を使い、表したらいいのですか? (3)~(5)は分かりません。 解き方を教えてください。    バネ定数k 質点1      質点2           |―∨∨∨∨―●―∨∨∨∨―●―∨∨∨∨―|  

  • 振動・波動の問題を教えてください!!緊急です。。。

    物理の振動・波動の問題です。 全く分からなくて、緊急事態です・・・ よろしくお願いします。 質量mを持つ2つの質点1,2が、自然長l、ばね定数kの3つのバネで接続され、x=0とx=Lで動かない壁に固定されている。水平右方向にとったx軸にそった1次元運動を考え、重力は考えない。(ただし、ω0≡√k/m) 図は、壁ーバネー質点1ーバネー質点2ーバネー壁 といった様子です。 (1)質点1,2の位置をそれぞれX1、X2としたとき、質点1,2の運動方程式を答えよ。 (2)質点が静止している場合の位置(釣り合いの位置)X1s、X2sを答えよ。 (3)質点1,2の位置を釣り合いの位置から測ったものをそれぞれ、x1=X1-X1s、x2=X2-X2sとする。x1、x2を使って質点1,質点2の運動方程式を表せ。 (4)運動方程式を解き、2つのモードの振動数ω1、ω2(ω2>ω1>0)をω0を用いて表せ。 (5)各々の振動数に対応する質点1,2の振幅の比を求めよ。 (6)各モードの振動の概略を図示せよ。 (7)モード1(振動数ω1)だけを起こすような初期条件の例を求めよ。 (8)t=0での初期条件が、位置がx1=a、x2=0、初速度がv1=0、v2=0で与えられるとき、位置x1(t)、x2(t)を求めよ。 (9)この運動の様子を簡潔に説明せよ。なお、必要なら、cosA+cosB=2cos{(A+B)/2}cos{(A-B)/2}、cosA-cosB=-2sin{(A+B)/2}sin{(A-B)/2}を用いても良い。

  • 物理の問題でわからないものがあります。

    「滑らかな水平面上で質量m1とm2の二つのおもりをバネ定数kのバネでつなぎ、静止した状態からばねの伸縮方向に一次元的に振動させる。この時の振動の周期として妥当なものはどれか。。ただし、おもりは質点とみなすことができ、釣り合いの位置でばねは自然の長さにあるものとする。なお、質量m1のおもりと質量m2のおもりの釣り合いの位置からの右向きの変位をそれぞれx1、x2とすると、二つのおもりの重心が動かないのでm1x1+m2x2=0が成り立つ」で答えが2π√(m1m2/k(m1+m2))なのですが解説がなくて困っています。運動方程式かと思ったのですが、うまくいきません。どなたか解き方を教えてください。

  • 強制振動

    壁にばね定数kのばねを取り付け、ばねのもう一方の端には質量mの 質点を取り付けます。壁は、y=acosωtで調和変位します。   | 壁|--/\/\/--○   |   ばね   質点 上図のような感じになっています。 このときの質点の強制振動の解は、(水平右方向をx軸の正として) x=kacosωt/(k-mω^2)となりますが(k≠mω^2のとき)、 ここでk=0とすると、x=0となってしまいます。 こうすると壁が変位しているのに質点は変位しないということになり おかしくなってしまいます。 たぶんどこかで私の考えがおかしいのだと思いますが、どこがおかしいのでしょうか? 強制振動の解xが、壁に対する相対変位だということならば k=0のときx=0でも違和感はないのですが・・・

  • 単振動の解

    自然の長さl, ばね定数k のばねの下端に質量mの質点をつるす。上端を鉛直方向に動かし、変位がacosωtとなる振動を与える。運動方程式の解を求めよ。ただし、ω≠√(k/m) とする。 という問題で、鉛直方向に動かしている時の質点の自然長からの変位をxとすると、 mx''=-kx + mg となるので 解は、 x=Acos(ω0t+α) + mg/k だと思ったのですが、 答えは x=Acos(ω0t+α) +{aω0^2cosωt/(ω0^2 - ω^2)} + l + (mg/k) となっていました。 変位を acosωt にするということが関係すると思うのですが、どう扱えば良いのかよく分かりません。 なぜこうなるのでしょうか?

  • 振動の問題

    天井の一点Oから質量の無視できるバネ(自然長l0,ばね定数k)が吊り下げられていて、バネのもう一端Pに長さ2a,質量Mの一端がとりつけられている。Oを原点として水平方向にx軸、鉛直下向きにy軸をとる。この合成系が重力の元で平面振動している。ばねと棒がy軸となすかくをそれぞれφ、θとするとき以下の問に答えよ。 (問)棒の運動方程式を求め、合成系のつりあいの位置を求めた後、そのつりあいの周りの微小振動に対する基準振動の振動数を求め、対応する基準振動はどのようなものか説明せよ 一応、途中までやってみたんですが(自信はないです) 棒の重心の運動方程式は,Fをばねから受ける力とすると x成分: Mx''=-F*sinφ・・・(1) y成分: My''=Mg-F*cosφ・・・(2) 重心のまわりの回転 :I*θ''=-F*a*sin(θ-φ)・・・(3) (Iは慣性モーメント) つりあいの位置は,(1)=0より、φ=0、(2)よりF=Mg,(3)よりθ=0,以上より、θ=φ=0、棒の重心の座標(0,l0+Mg/k+a)。 この後、つりあいの位置の周りの微小振動の基準振動を求めたいのですが、よくわかりません。 バネが伸び縮みするので、どのように手をつけていいのか余計にわからなくなっています。 よろしくお願いします。