• 締切済み
  • すぐに回答を!

大学の数学の勉強をしていてどうしても分からない問題があるので教えてください。

運動方程式まででも良いのでお願いします。 同じ質量mを持つ3つの質点A、B、Cが直線上に左から右へと並んでおり AとB、BとCはバネ定数kのバネで繋がれている。 さらにAは左側の壁と、Cは右側の壁との間にもバネ定数kのバネで繋がれている。 (重力は考えなくてよい) (1) A、B、Cそれぞれの釣り合いの位置からの変位をx1、x2、x3とする。 A、B、Cそれぞれの運動方程式(微分方程式)を書き下ろし ω=k/mX=(x1 x2 x3) として3つの運動方程式を((d^2)X)/(dt^2) = -(ω^2)AX の形にまとめると、 A=( 2 -1 0 -1 2 -1 0 -1 2 ) となることを示せ。 (2) この系の固有振動の振動数と各固有振動における各質点の相対的変位 (振動モード) を求めよ。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数82
  • ありがとう数1

みんなの回答

  • 回答No.2
  • pascal3
  • ベストアンサー率42% (25/59)

まずは問題文や文中の式を書き写す時点で不正確なことをしている。 ちゃんと気をつけて問題文を読んでください。 大学教員としてはその時点で許しがたいという気もするが、それは置いておいて…。 これと同じ問題で質点が2個のバージョンは、定番中の定番で、たいていの教科書に載っています。 それをまずは自分の手でしっかりノートにまとめなおして、考え方を理解してください。 考え方が理解できたら、あとはそれを素直に質点3個に拡張すればOKです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 物理のバネの問題教えてください

    質点1と質点2が3つのバネでつながれている。 2つの質点はともに m 、3つのバネはともに自然長で l 、バネ定数は k である。 時刻t=0で質点は静止しているが、平行の位置からの変位は、x1(0)=a、x2(0)=bただし、0<a<bである。 質点1,2の運動は平行位置からの変位x1,x2で表す。(右向きが正) (1)質点1、質点2の運動方程式は? (2)y1=x1+x2、y2=x1-x2とする。y1、y2を満たす微分方程式は? (3)y1、y2の角振動数をそれぞれω1、ω2としたとき、ω2/ω1も値は? (4)y1*y2の方程式を解く (5)x1、x2を求める (1) mx1"=-kx1+k(x2-x1) mx2"=-kx2-k(x2-x1) で正しいですか? (2)(1)をy1、y2を使い、表したらいいのですか? (3)~(5)は分かりません。 解き方を教えてください。    バネ定数k 質点1      質点2           |―∨∨∨∨―●―∨∨∨∨―●―∨∨∨∨―|  

  • 連成振子

    ~~はバネ定数がすべてkのばね、○は左から順に質量m1,m2,m3の質点としてください。 下図の時、この振子の振動をx軸方向の一次元運動とし、3つの質点の座標をx1,x2,x3として解きたいのですが、まず3つの質点の運動方程式をたてなければならないことは分かっているのですが、バネが多すぎてどのようになるのかよく分かりません。一体どうなるのでしょうか?  壁―~~―○―~~―○―~~―○―~~―壁

  • 振動の問題です

    分からないので教えて頂けると助かります。 N個の質量mの質点がバネ定数kのバネで一列につながっているとする。 j番目の釣り合いの位置からの変位をx_jと表す。 j番目の質点の運動方程式は (d/dt)^2(x_j)=-ω^2(2x_j-x_(j+1)-x_(j-1)) と表される。 ここで、x_0=0,x_N+1=0,ω=√(k/m)である。 x_j=Asin(kj)+Bcos(kj)として運動方程式を解き、基準振動の振動数を求めよ。

  • 回答No.1

つりあい位置にあるときのばねの伸びをaとします。 座標x_{n}にある質点について,   左にあるばねの伸びは,x_{n} - x_{n-1} + a   右にあるばねの伸びは,x_{n+1} - x{n} + a となります。すると合力は,   -k(x_{n} - x_{n-1} + a) + k(x_{n+1} - x{n} + a) = -k(- x_{n-1} + 2x_{n} - x_{n+1}) となりますから,運動方程式は m d^2(x_{n})/dt^2 = -k(- x_{n-1} + 2x_{n} - x_{n+1}) すなわち,Aのn行目は A_{n,n-1} = -1 , A_{n,n} = 2 , A_{n,n+1} = -1 , その他 0 となります。ただし,第1行と第n行は3つ並びの端が切れるわけです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 振動・波動の問題を教えてください!!緊急です。。。

    物理の振動・波動の問題です。 全く分からなくて、緊急事態です・・・ よろしくお願いします。 質量mを持つ2つの質点1,2が、自然長l、ばね定数kの3つのバネで接続され、x=0とx=Lで動かない壁に固定されている。水平右方向にとったx軸にそった1次元運動を考え、重力は考えない。(ただし、ω0≡√k/m) 図は、壁ーバネー質点1ーバネー質点2ーバネー壁 といった様子です。 (1)質点1,2の位置をそれぞれX1、X2としたとき、質点1,2の運動方程式を答えよ。 (2)質点が静止している場合の位置(釣り合いの位置)X1s、X2sを答えよ。 (3)質点1,2の位置を釣り合いの位置から測ったものをそれぞれ、x1=X1-X1s、x2=X2-X2sとする。x1、x2を使って質点1,質点2の運動方程式を表せ。 (4)運動方程式を解き、2つのモードの振動数ω1、ω2(ω2>ω1>0)をω0を用いて表せ。 (5)各々の振動数に対応する質点1,2の振幅の比を求めよ。 (6)各モードの振動の概略を図示せよ。 (7)モード1(振動数ω1)だけを起こすような初期条件の例を求めよ。 (8)t=0での初期条件が、位置がx1=a、x2=0、初速度がv1=0、v2=0で与えられるとき、位置x1(t)、x2(t)を求めよ。 (9)この運動の様子を簡潔に説明せよ。なお、必要なら、cosA+cosB=2cos{(A+B)/2}cos{(A-B)/2}、cosA-cosB=-2sin{(A+B)/2}sin{(A-B)/2}を用いても良い。

  • 2物体の連成振動

    理系大学一年です。物理の問題で不明な点があります。 壁|∞●∞●∞|壁 (ただし∞はバネ、●は質点を表す) バネ定数は左からk1,k2,k3 質点の質量は左からm1,m2です。 この力学系の縦振動の基準各振動数ω1,ω2と、各々の基準各振動について二個の質点の変位の振幅の比を求めよ(ただし、両質点の位相は同位相か逆位相とせよ)という問題です。 m1、m2の変位をそれぞれx1,x2としてまず、運動方程式をたてました。 (m1)かけるx1ツードット=-(k1)(x1)-k2(x1-x2) (m2)かけるx2ツードット=-(k2)(x2-x1)-(k3)(x2) そして、一般解をx1=C1 cos(ωt+α)  x2=C2 cos(ωt+α)と置き、 運動方程式にそれぞれ代入しました。 すると、次の式が得られました。 -(m1)(ω^2)(C1)=-(k1+k2)C1+(K2)(C2) -(m2)(ω^2)(C2)=(k2)(C1)-(k2+k3)C2 そして、行列式(左上、右上、左下、右下の順で (k1+k2)-(m1)(ω^2)、-k2、-k2、(k2+k3)-(m2)(ω^2))が0になるという条件を用いて、ω^2=pとおいて、pについて解の公式を用いて出すと 二次方程式が解けません。ルートの中身(b^2-4ac)が(なんか)の二乗になればいいのですが。 一カ所符号が違えば、きれいにルートが外せる気がします。 そうするとω^2=(k1+k2)/m1,(k2+k3)/m2となるのですが、 納得がいかず、先に進めません。 いままでのところでおかしい部分があるのでしょうか。 お忙しいとは思いますが、ご教授ください。

  • 重心運動

    水平面xで質量m1,m2の質点の間にバネ定数k、自然長lのバネが結合され、原点Oから右にx1,x2の距離にm1,m2の質点が置かれている。 この二つのx面での運動に対する運動方程式はそれぞれ m1(d^2x1/dt^2)=K(x2-x1-l) m2(d^2x2/dt^2)=-k(x2-x1-l), また重心Xgに対する運動方程式は (m1+m2)(d^2Xg/dt^2)=0 だということは自分で解いたのですが、(1)この二つの質点の重心Xgがどのように表されるか、(2)また重心Xgはどのような運動をするか、(3)この二つの質点からなる系が振動した場合の振動に対する運動方程式が立てられません。これらのこと(特に(3))がいまいちよくわかりません。どうかよろしくお願いします。

  • 振動です

    図のように、2つのばねk1,k2と2つの質量m1,m2がとり付けられています。xo(t)=Xosinωtで支持部が変位するとき (1)この振動系の運動方程式を導出しなさい 私の回答 m1(d^2 x1 /dt^2)=-k1(x1-xo)+k2(x2-x1) と m2(d^2 x2 /dt^2)=-k2(x2-x1) (2)k1=2k , k2=k ,m1=m ,m2=m/2 の時、設問(1)の運動方程式はどう書き直せるか。ωo=√(k/m)を用いて記述せよ 私の回答 (d^2 x1 /dt^2)=-2(ωo^2)(x1-xo)+(ωo^2)(x2-x1) (d^2 x2 /dt^2)=-2(ωo^2)(x2-x1) (3)ωo=1rad/sのとき、設問(2)の運動方程式を用い、固有角振動数ωnを求めよ。 この問題を見た瞬間、あれωoが(不減衰)固有角振動数でないの?って思いました。ωoとωn何が違うのですか? それと設問(1)(2)は正しいですか?教えてください

  • わからなくて困っています

    物理の問題です バネ定数kのバネにつながれた質量mの質点の運動方程式(単振動の方程式)は、 バネの伸びをxとすると m・d^2/dt^2=-kx ・・・(1)で与えられる。 (a)(1)式の解がx(t)=Asin(ωt+C)(A,ω,C:定数)で与えられるとし、角振動数ωと振動の周期Tを求めよ。 (b)単振動の解の初期条件がx(t)=xo、dx(0)/dt=0の時のA,Cを決定せよ。 (c)バネ定数kの2つのバネを直列につないで同様な単振動をさせたと知ると、全体としてのバネ定数はどのようになるか? その場合の角振動数と周期はどうなるか? 僕の答えは (a)ω=√(m/k)、T=2π/ω=2π√(m/k) (b)A=-1/2、C=xo (c)はわかりませんでした これらがあっているか教えてくださいm(__)m 間違ってたらどうやればいいのか教えてくださると嬉しいです。 よろしくお願いします。

  • 壁|-(ダンパ)-質量-(バネ) ←変位y=Asin(ωt)

    壁|-(ダンパ)-質量-(バネ) ←変位y=Asin(ωt)       変位x→ といったモデルの運動方程式はどのようになりますか? バネ質量ダンパの運動方程式は分かるのですが、こちらはイマイチ分かりません。どなたかよろしくお願いします。

  • 連成振動の力学的エネルギーについて

    物理学で出題された連成運動の問題の解法がわかりません。 連成振動の問題では、固有値を用いて解くと教わったのですが、2つの運動方程式を 行列表示にできません。どの様に解けばよいのでしょうか。ご意見よろしくお願いします。 [問題] 左から「壁|バネ1+物体1+バネ2+物体2」となっている連成振動で、 物体1,物体2の質量をm1,m2、バネ1,バネ2のバネ定数をk1,k2、バネ1,バネ2の自然長をl1,l2 の条件のもと、1次元的に振動する運動をします。質点と床の間の摩擦や空気抵抗、バネの質量 は無視できるものとし、左端の壁からそれぞれの質点までの距離をx1,x2としてこの質点系の 力学的エネルギーの式を導け。

  • 振動の分野の問題です。運動方程式はたてたのですがこのあとどうすればいいかわかりません

    縦に質量mの2つの質点がバネ定数kのバネでつながっていて落下しながら振動するときその運動の様子を求めよ  的な問題です 2つの質点は初速度0です それぞれの質点について運動方程式を建てたんですがそのあとどうすればいいかわかりません 先日の質問に答えていただいた方へ お礼もせずに質問が消えてしまいすいませんでした

  • バネで結ばれた2つの質点の運動について

    バネ定数kのバネで結ばれた2つの質点AおよびBがある。 質点AおよびBの質量をm_A(mに下付きでA, 以後、下付きの文字の前には_を書くことにする)およびm_B、 位置をx_Aおよびx_Bとする。 両質点にバネから力が作用しない際のバネの長さ(自然長)をδとする。 質点はバネの伸縮するx軸方向のみに運動するものと仮定する。 AwwwwwwwwB ーーーーー→x (2質点系のモデルの簡単な図です。分かりにくくてすみません・・・) (1)質点Aおよび質点Bの運動方程式を完成させよ(これは解けました)。 m_A・((d^2(x_A))/(dt^2))=k(x_B-x_A-δ) m_B・((d^2(x_B))/(dt^2))=-k(x_B-x_A-δ) (2)時間t=0において、両質点は静止しているものとし、その際の両質点 の位置をx_A=x_(AI)およびx_B=x_(BI)とし、x_(BI)-x_(AI)≠δとする。 以下の式の右辺を完成させよ(この問題の右辺をどのように書き表す べきか、出題者がどのような答えを求めているのかよく分かりません でしたが、一応速度を書きました)。 dx_A/dt(t=0)=v_(AI) dx_B/dt(t=0)=v_(BI) (3)運動方程式の解である質点AおよびBの位置x_Aおよびx_Bは、6個の定数、X_A、X_B、λ、α、ν、およびCを用いて、 x_A=(X_A)sin(λt+α)+νt+C x_B=(X_B)sin(λt+α)+νt+C+δ と表すことができる。これらの式と(1)の運動方程式より、X_Aおよび X_Bの関係式(連立方程式)を求めよ。 (この問題は、自信はあまりありませんが、問題文で書かれたとおりに計算を行っていったら、 以下のようになりました。) X_A=-(k((x_B)-(x_A)-δ))/((m_A)(λ^2)sin(λt+α)) X_B=k((x_B)-(x_A)-δ)/((m_B)(λ^2)sin(λt+α)) (4)(3)で導いた式に対して、X_AおよびX_Bの両方が0(ゼロ)にならない 解が存在し得ることを用い、λをm_A、m_Bおよびkを用いて表せ。なお、一般性を失うことなく、λ≧0と仮定できる。 (4)の問題が分かりません。 「X_AおよびX_Bの両方が0(ゼロ)にならない解が存在し得ることを用い」 とあるのですが、これの使い方がいまいちよく理解できません。 色々と式変形してみたのですが、どのように変形しても、 m_A、m_Bおよびkのみで表せません。 相対座標に関する運動方程式を求め、そこから相対座標の運動の固有角振動数を求めるのかとも思ったのですが、それでは(3)を利用していないことになります。 ちなみに、相対座標の運動の固有角振動数は√(k/μ)となりました。 ここで1/μ=1/m_A+1/m_Bです。 長々とすみませんでした。どなたか(4)の問題、ご教授のほど、ヨロシクお願いします。 また、答えで何か間違えているところなどありましたら、ご指摘ヨロシクお願いします。

  • 1自由度振動系の運動方程式の解法について

    mを質量 cを減衰係数 kをバネ定数 (dx/dt)^2 をXをtでの2階微分とします。 今 m(dx1/dt)^2+c{(dx1/dt)-(dx0/dt)}+k(x1-x0)=0 という運動方程式で表される1自由度線形振動系があるとします。 この運動方程式を解くとき、 x0=Xsinωt x1=Ysin(ωt-φ) としたとき、上の二つの式を直接運動方程式に代入して解き、Y/Xを導く場合どうしてもφやsinやcosのせいで綺麗に解くことができません。 こういう場合に必要なテクニックなどあれば教えていただきたいです。 よろしくお願いします

専門家に質問してみよう