• 締切済み
  • すぐに回答を!

大学の数学の勉強をしていてどうしても分からない問題があるので教えてください。

運動方程式まででも良いのでお願いします。 同じ質量mを持つ3つの質点A、B、Cが直線上に左から右へと並んでおり AとB、BとCはバネ定数kのバネで繋がれている。 さらにAは左側の壁と、Cは右側の壁との間にもバネ定数kのバネで繋がれている。 (重力は考えなくてよい) (1) A、B、Cそれぞれの釣り合いの位置からの変位をx1、x2、x3とする。 A、B、Cそれぞれの運動方程式(微分方程式)を書き下ろし ω=k/mX=(x1 x2 x3) として3つの運動方程式を((d^2)X)/(dt^2) = -(ω^2)AX の形にまとめると、 A=( 2 -1 0 -1 2 -1 0 -1 2 ) となることを示せ。 (2) この系の固有振動の振動数と各固有振動における各質点の相対的変位 (振動モード) を求めよ。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数2
  • 閲覧数88
  • ありがとう数1

みんなの回答

  • 回答No.2
  • pascal3
  • ベストアンサー率42% (25/59)

まずは問題文や文中の式を書き写す時点で不正確なことをしている。 ちゃんと気をつけて問題文を読んでください。 大学教員としてはその時点で許しがたいという気もするが、それは置いておいて…。 これと同じ問題で質点が2個のバージョンは、定番中の定番で、たいていの教科書に載っています。 それをまずは自分の手でしっかりノートにまとめなおして、考え方を理解してください。 考え方が理解できたら、あとはそれを素直に質点3個に拡張すればOKです。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

つりあい位置にあるときのばねの伸びをaとします。 座標x_{n}にある質点について,   左にあるばねの伸びは,x_{n} - x_{n-1} + a   右にあるばねの伸びは,x_{n+1} - x{n} + a となります。すると合力は,   -k(x_{n} - x_{n-1} + a) + k(x_{n+1} - x{n} + a) = -k(- x_{n-1} + 2x_{n} - x_{n+1}) となりますから,運動方程式は m d^2(x_{n})/dt^2 = -k(- x_{n-1} + 2x_{n} - x_{n+1}) すなわち,Aのn行目は A_{n,n-1} = -1 , A_{n,n} = 2 , A_{n,n+1} = -1 , その他 0 となります。ただし,第1行と第n行は3つ並びの端が切れるわけです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 物理のバネの問題教えてください

    質点1と質点2が3つのバネでつながれている。 2つの質点はともに m 、3つのバネはともに自然長で l 、バネ定数は k である。 時刻t=0で質点は静止しているが、平行の位置からの変位は、x1(0)=a、x2(0)=bただし、0<a<bである。 質点1,2の運動は平行位置からの変位x1,x2で表す。(右向きが正) (1)質点1、質点2の運動方程式は? (2)y1=x1+x2、y2=x1-x2とする。y1、y2を満たす微分方程式は? (3)y1、y2の角振動数をそれぞれω1、ω2としたとき、ω2/ω1も値は? (4)y1*y2の方程式を解く (5)x1、x2を求める (1) mx1"=-kx1+k(x2-x1) mx2"=-kx2-k(x2-x1) で正しいですか? (2)(1)をy1、y2を使い、表したらいいのですか? (3)~(5)は分かりません。 解き方を教えてください。    バネ定数k 質点1      質点2           |―∨∨∨∨―●―∨∨∨∨―●―∨∨∨∨―|  

  • 振動・波動の問題を教えてください!!緊急です。。。

    物理の振動・波動の問題です。 全く分からなくて、緊急事態です・・・ よろしくお願いします。 質量mを持つ2つの質点1,2が、自然長l、ばね定数kの3つのバネで接続され、x=0とx=Lで動かない壁に固定されている。水平右方向にとったx軸にそった1次元運動を考え、重力は考えない。(ただし、ω0≡√k/m) 図は、壁ーバネー質点1ーバネー質点2ーバネー壁 といった様子です。 (1)質点1,2の位置をそれぞれX1、X2としたとき、質点1,2の運動方程式を答えよ。 (2)質点が静止している場合の位置(釣り合いの位置)X1s、X2sを答えよ。 (3)質点1,2の位置を釣り合いの位置から測ったものをそれぞれ、x1=X1-X1s、x2=X2-X2sとする。x1、x2を使って質点1,質点2の運動方程式を表せ。 (4)運動方程式を解き、2つのモードの振動数ω1、ω2(ω2>ω1>0)をω0を用いて表せ。 (5)各々の振動数に対応する質点1,2の振幅の比を求めよ。 (6)各モードの振動の概略を図示せよ。 (7)モード1(振動数ω1)だけを起こすような初期条件の例を求めよ。 (8)t=0での初期条件が、位置がx1=a、x2=0、初速度がv1=0、v2=0で与えられるとき、位置x1(t)、x2(t)を求めよ。 (9)この運動の様子を簡潔に説明せよ。なお、必要なら、cosA+cosB=2cos{(A+B)/2}cos{(A-B)/2}、cosA-cosB=-2sin{(A+B)/2}sin{(A-B)/2}を用いても良い。

  • ばねと二つの質点の問題

    ばねと二つの質点の問題 課題でまったくわからない問題があったので、もしわかる方がいらっしゃいましたら教えて下さい。お願いします。 問題文 自然長L、ばね定数kのばねの両端に質量Mの質点1と質量mの質点2が結ばれ、滑らかで水平な台の上にある。質点の運動方向をx軸にとり、質点1と質点2の位置をx1とx2とする。 (a)質点1と質点2の運動方程式を書け。 (b)質量中心の運動方程式を(a)より導き、その一般解を求めよ。 (c)質点2の質点1に対する相対運動の方程式を(a)より導き、その一般解を求めよ。 (d)相対運動の単振動の周期は、M→∞、M=2m、M=m/2、M→0のとき、それぞれT0=2π√m/kの何倍となるか。

  • 2質点系とばねの問題

    よくある問題なのですが式の立て方がわかりません 問題 バネ定数kのバネで結ばれた2つの質点1および2がある。 質点1および2の質量をMおよびmとする 位置をx1およびx2とする。 両質点にバネから力が作用しない際のバネの長さ(自然長)をδとする。 質点はバネの伸縮するx軸方向のみに運動するものと仮定する。 1​wwwwwwww​2 ーーーーー→x (1)質点Aおよび質点Bの運動方程式を完成させよ M・((d^2(x1))/(dt^2))=k(x2-x1-δ)・・(1) m・((d^2(x2))/(dt^2))=-k(x2-x1-δ)・・(2) とあるのですが、(1)の式の右辺の式は(2)の伸び(あるいは縮み)の量は入れなくてよいのでしょうか?それとも(1)の式で質点2は固定してたてた式と考えてよいのでしょうか?

  • 連成振子

    ~~はバネ定数がすべてkのばね、○は左から順に質量m1,m2,m3の質点としてください。 下図の時、この振子の振動をx軸方向の一次元運動とし、3つの質点の座標をx1,x2,x3として解きたいのですが、まず3つの質点の運動方程式をたてなければならないことは分かっているのですが、バネが多すぎてどのようになるのかよく分かりません。一体どうなるのでしょうか?  壁―~~―○―~~―○―~~―○―~~―壁

  • 振動の問題です

    分からないので教えて頂けると助かります。 N個の質量mの質点がバネ定数kのバネで一列につながっているとする。 j番目の釣り合いの位置からの変位をx_jと表す。 j番目の質点の運動方程式は (d/dt)^2(x_j)=-ω^2(2x_j-x_(j+1)-x_(j-1)) と表される。 ここで、x_0=0,x_N+1=0,ω=√(k/m)である。 x_j=Asin(kj)+Bcos(kj)として運動方程式を解き、基準振動の振動数を求めよ。

  • 2物体の連成振動

    理系大学一年です。物理の問題で不明な点があります。 壁|∞●∞●∞|壁 (ただし∞はバネ、●は質点を表す) バネ定数は左からk1,k2,k3 質点の質量は左からm1,m2です。 この力学系の縦振動の基準各振動数ω1,ω2と、各々の基準各振動について二個の質点の変位の振幅の比を求めよ(ただし、両質点の位相は同位相か逆位相とせよ)という問題です。 m1、m2の変位をそれぞれx1,x2としてまず、運動方程式をたてました。 (m1)かけるx1ツードット=-(k1)(x1)-k2(x1-x2) (m2)かけるx2ツードット=-(k2)(x2-x1)-(k3)(x2) そして、一般解をx1=C1 cos(ωt+α)  x2=C2 cos(ωt+α)と置き、 運動方程式にそれぞれ代入しました。 すると、次の式が得られました。 -(m1)(ω^2)(C1)=-(k1+k2)C1+(K2)(C2) -(m2)(ω^2)(C2)=(k2)(C1)-(k2+k3)C2 そして、行列式(左上、右上、左下、右下の順で (k1+k2)-(m1)(ω^2)、-k2、-k2、(k2+k3)-(m2)(ω^2))が0になるという条件を用いて、ω^2=pとおいて、pについて解の公式を用いて出すと 二次方程式が解けません。ルートの中身(b^2-4ac)が(なんか)の二乗になればいいのですが。 一カ所符号が違えば、きれいにルートが外せる気がします。 そうするとω^2=(k1+k2)/m1,(k2+k3)/m2となるのですが、 納得がいかず、先に進めません。 いままでのところでおかしい部分があるのでしょうか。 お忙しいとは思いますが、ご教授ください。

  • ばねの問題

    以前も質問したのですがもう一度詳しく質問させてもらいます よくある問題なのですが式の立て方がわかりません 問題 バネ定数kのバネで結ばれた2つの質点1および2がある。 質点1および2の質量をMおよびmとする 位置をx1およびx2とする。 両質点にバネから力が作用しない際のバネの長さ(自然長)をδとする。 質点はバネの伸縮するx軸方向のみに運動するものと仮定する。 (1)質点Aおよび質点Bの運動方程式を完成させよ M・((d^2(x1))/(dt^2))=k(x2-x1-δ)・・(1) m・((d^2(x2))/(dt^2))=-k(x2-x1-δ)・・(2) とあるのですが自分の考えでは ____OwwwwwwwwwO ____x1____o1_______o2___x2___ 質点1の位置:x1 質点2の位置:x2 質点1の自然長での位置:o1 質点2の自然長での位置:o2 としたとき x1についての自然長からののび:x2-x1-δ-(x2-o2) となるではないでしょうか? お願いします

  • 連成振動の力学的エネルギーについて

    物理学で出題された連成運動の問題の解法がわかりません。 連成振動の問題では、固有値を用いて解くと教わったのですが、2つの運動方程式を 行列表示にできません。どの様に解けばよいのでしょうか。ご意見よろしくお願いします。 [問題] 左から「壁|バネ1+物体1+バネ2+物体2」となっている連成振動で、 物体1,物体2の質量をm1,m2、バネ1,バネ2のバネ定数をk1,k2、バネ1,バネ2の自然長をl1,l2 の条件のもと、1次元的に振動する運動をします。質点と床の間の摩擦や空気抵抗、バネの質量 は無視できるものとし、左端の壁からそれぞれの質点までの距離をx1,x2としてこの質点系の 力学的エネルギーの式を導け。

  • 振動の問題です

    以下の問題を自分で解いてみました 答えはあっていますか?  図のように、質量mの質点が、ばね定数kの二つのばね、および減衰係数cのダッシュポットに支えられている。ばねの質量は無視できるとして、以下の設間(1)~(4)に答えなさい。 (1)つりあい位置からの質点の変位をx(t)として、この系の運動方程式を求めなさい (2)c=0のときの系の固有円振動数ωoを求めなさい。 (3)この系の臨界減衰係数c_cを求めなさい。 (4)初期変位x(0)=x。、初期速度dx(0)/dt(0)=0が与えられたときの系の自由振動を求めなさい。 (1)md^2x(t)/dt^2=-cdx(t)/dt-kx(t) (2)ω。=√k/m (3) ζ=c/c_c 臨界減衰なのでζ=1 ∴c_c=c (4) (1)の微分方程式を解くと x(t)=-ctx(t)/m-kx(t)t^2/2m+x。t+x。