クーン・タッカーの定理について教えてください

このQ&Aのポイント
  • クーン・タッカーの定理を用いて、モノポリストが2つの市場で品物を売る際の利益最大化の問題を解く方法についてご説明します。
  • 問題の条件として、モノポリストの持つ品物のストック数と市場1,2の需要曲線が与えられます。
  • 利益の最大化を求めるためには、ラグランジェの式を用いて部分微分を行う必要があります。クーン・タッカーの定理は、利益最大化の問題に応用できる定理ですが、条件式に等号が含まれていない場合でも使用することができます。
回答を見る
  • ベストアンサー

クーン・タッカーの定理について教えてください

モノポリストが2つの市場で1つの品物を売ろうとしています。会社には、Qの品物のストックがあります。このとき、市場1,2における需要曲線は、p = ai - q (i=1,2)で表されます。さらに、Q > (1/2)a1 ≧ (1/2)a2 という条件があります。このとき、利益が最大になるような売却個数を求めよという問題です。 まず売却額は、pi×qi=(ai-qi)qi (i=1,2)です。 次に与えられた条件を使い、ラグランジェの式を、 L(q1,q2,λ1,λ2,λ3)=(a1-q1)q1+(a2-q2)q2+λ1(Q-q1-q2)+λ2{Q-(1/2)a1}+λ3{(1/2)a1-(1/2)a2}と置き、これをq1,q2,λ1,λ2,λ3についてそれぞれ部分微分をかけていくという方向性でよいのでしょうか? また、クーン・タッカーの定理を用いたいのですが、条件『 Q > (1/2)a1 ≧ (1/2)a2』の『 Q > (1/2)a1 』には、不等式に等号が入っていません。この場合、クーン・タッカーは使えるのでしょうか? よろしくお願いいたします。

質問者が選んだベストアンサー

  • ベストアンサー
noname#44811
noname#44811
回答No.1

ラグランジェの式が間違っていると思います この最大化問題において、変数、その変数の制約条件を考えてみてください。 ラグランジェの式の右辺でいらない項があると思います。

関連するQ&A

  • 統計学 条件付きエントロピーの問題

    (1) H(X , X) = ? (2) H(X|X) = ? (3) I(X ; X) = ? 情報源 X {a₁, a₂, ..., am}    pi = P(X=ai) 情報源 Y {b₁, b₂, ..., bn}    qi = P(Y=bj)     rij = P(X=ai , Y=bj) とする   XとYの同時エントロピー H(X , Y) = -Σrij log₂rij  pi = nΣ(j=1)rij  pj = mΣ(i=1)rij …… というように定義していくと、問題はどのように解かれますか。

  • この数学の問題を教えてください!

    下の数学Iの問題を教えてください!(3つ) (1)a>0のとき、不等式a+1/a≧2を証明せよ。また、等号が成り立つときを調べよ。 (2)a>0、b>0のとき、次の不等式を証明せよ。 (a+b)(1/a+1/b)≧4 (3)a>0、b>0のとき、不等式a/b+b/a≧2を証明せよ。 また、等号が成り立つときを調べよ。 たくさんあってすみませんm(_ _)m

  • ヤングの不等式の等号成立について

    ヤングの不等式ab≦(a^p)/p+(b^q)/qで 等号成立がa^p=b^q とあるのですが、これの証明ってどうやるのでしょうか? どの本を見ても「明らか」としか書いてないので・・・

  • 等号の成立条件

    コーシー・シュワルツの不等式の等号の成立条件がわからないので質問します。a^+b^+c^=1,x^2+y^2+z^2=1のとき 不等式-1≦ax+by+cz≦1を証明せよ。という問題で、不等式の証明はできたのですが、等号の成立条件がわからなかったです。左の等号が成り立つのは、a:b:c=-x:-y:-zかつa^+b^+c^=1かつx^2+y^2+z^2=1のとき。右の等号が成り立つのは、a:b:c=x:y:zかつa^+b^+c^=1かつx^2+y^2+z^2=1のとき。左の等号の成立条件のa:b:c=-x:-y:-zがわかりません。インターネットで少し調べて、→u=(a,b,c),→v=(x,y,z),→uと→vのなす角θとして内積よりコーシー・シュワルツの不等式を調べてみたのですが、分からなかったです。どなたか、左の等号の成立条件を教えてくださいお願いします。

  • 統計学

    どうしても分からないので教えて欲しいと思います。 問題は、 「離散型確率変数X,Yの分布はP(X=xi)=pi(i=1,2)   P(Y=yi)=qi(i=1,2)である。(1)P(X=xi,Y=yj)=rij(i,j=1,2)とするとき、 ri1+ri2=pi(i=1,2) r1j+r2j=qj (j=1,2) が成立することを示せ。」です。 再提出となった自分のレポートは、  まず、x1とx2の確率(p1, p2とする)の合計が1になる表と、同様にy1とy2の確率(q1,q2とする)の合計が1となる表をかきました。  次に、iとjの組み合わせについて、(xi, yi)とrijとの対応する表をかき、 r11+r12=p1 ((1)とする) r21+r22=p2 ((2)とする) r11+r21=q1 ((3)とする) r12+r22=q2 ((4)とする)を導き、 (1)、(2)より、ri1+ri2=pi (i=1,2) (3)、(4)より、r1j+r2j=qj (j=1,2) したがって、ri1+ri2=pi (i=1,2) r1j+r2j=qj (j=1,2) が示せた。 と書いて出した所、 「文中の表は(ⅰ)P(X=xi,Y=y1)+P(X=xi,Y=y2)=pi(i=1,2) (ⅱ)P(X=x1,Y=yj)+P(X=x2,Y=yj)=qj (j=1,2) が成立することを前提にして作った表です。(ⅰ)、(ⅱ)の等式の成立を証明して下さい。」   と書かれて再提出でした。(ⅰ)、(ⅱ)の等式の成立の証明なんですが、いくら考えても出来ません。どなたかアドバイスお願いします。

  • ヘルダー&ミンコフスキー(?)の不等式について

    任意の正の数a,bについて ab≦(a^p/p)+(b^q/q) (但し(1/p)+(1/q)=1) という『ヤングの不等式』を利用して次の『ヘルダーの不等式』と『ミンコフスキーの不等式』を示したいのですが、よくわからずに困っています…. 『ヘルダーの不等式』 {(Σ|a_i|^p)^(1/p)}{(Σ|b_i|^q)^(1/q)}≧|Σa_ib_i| (但し(1/p)+(1/q)=1) (Σはi=1~n) 『ミンコフスキーの不等式』 (Σ|a_i+b_i|^p)^(1/p) ≦(Σ|a_i|^p)^(1/p)+(Σ|b_i|^p)^(1/p) (但しp≧1) どなたか回答よろしくお願い致しますm(__)m

  • 線形代数の証明問題です!

    線形代数(最少多項式について)の証明問題です。どうしても解りません・・ よろしくお願い致します。 「n次正方行列 P1,P2,…,Pn が条件 Pi^2=Pi≠O (i=1,2,…,n) PiPj=O (i≠j, 1≦i≦n, 1≦j≦n) ∑Pi=E (iは1からn) (但し、Oはn次零行列、Eはn次単位行列とする。) を満たすとする。 次に、互いに異なる実数 a1, a2,…,an に対し、行列Aを A=∑aiPi (iは1からn) で与える。 この行列Aについて次の命題を証明せよ。」 命題1 X を変数ベクトル、B を定ベクトルとする。 連立一次方程式 AX=B が解をもつための必要十分条件は 、 ai=0を満たす全ての番号 i に対して Pi B=0 が成り立つことである。 命題2 Aの最小多項式は (x-a1)(x-a2)…… (x-an) となる。

  • 確率変数について

    【問題】 離散型確率変数X,Yの分布がP(X = xi) = pi, P(Y = yi) = qi (i = 1,2)であるとき, E(X + Y) = E(X) + E(Y)を示せ. 【自分なりの解答】 P(X = xi and Y = yj) = rijとする. ゆえにpi = ri1 + ri2 かつ, qi = r1i + r2iである. E(X + Y) = (x1 + y1)r11 + (x1 + y2)r12 = (x2 + y1)r21 + (x2 + y2)r22 = x1(r11 + r12) + x2(r21 + r22) = y1(r11 + r21) + y2(r12 + r22) = x1p1 + x2p2 + y1q1 + y2q2 = (x1p1 + x2p2) + (y1q1 + y2q2) = E(X) + E(Y) 【質問】 この解答は P(X = xi and Y = yj) = rijと仮定した時に, pi = ri1 + ri2かつ, qi = r1i + r2iであることを大前提にして問題を解いています.でもこの大前提がなぜ成立するのかが,上手に表現(証明)できません.何かアドバイスをいただけないでしょうか?よろしくお願いします.

  • 不等式の証明と命題の真偽(基本的)

    お世話になっております。 実数a、b、cに対して、 等式 |a|+|b|+|c|=|a+b+c|…P が成立つことは、ab+bc+ca≧0 …Q が成立つための○○条件である。(○の数は特に意味なし) という問題です。証明も合わせて(不等式を証明して、等号成立条件を調べてから命題を考えてみたかった為)以下のように考えてみました。 まず証明。 与えられた等式を考える前に、不等式 |a|+|b|+|c|≧|a+b+c|…(2)を証明する。 (2)の両辺は正または0であるから、両辺の二乗の差を考えて (|a|+|b|+|c|)^2-|a+b+c|^2 =2{|ab|+|bc|+|ca|-(ab+bc+ca)} =2{(|ab|-ab)+(|bc|-bc)+(|ca|-ca)}…(3) ここで、|ab|≧ab,|bc|≧bc,|ca|≧ca だから、(3)≧0。従って不等式(2)は成立つ。等号成立は、ab≧0,bc≧0,ca≧0…(4) より、ab+bc+ca≧0 の時に限る。 よって、等式Pが成立つとき、a,b,cはQを満たす。(ここが一番曖昧です) 逆にQが成立つとき、(4)が成立つから、積の場合分けで導かれる二つの場合で、 a≧0かつb≧0かつc≧0 のときは、Pは成立つ。 a≦0かつb≦0かつc≦0 のときはPは、 左辺=-a-b-c=-(a+b+c)=右辺 より成立つ。 以上より、○○は必要十分条件が適当と思す。 以上、拙いですが頭捻ってみました。当方が微妙だと感じるのは、不等式の証明についての説明部分(解答ではb+cを一括りにしてaと(b+c)の二変数と考えて、二変数については不等式が成立つことを利用して証明してました)と、既に書いた通り、条件Pが十分条件であることの説明部分(こちらは解答なし)です。 長ったらしい文で恐縮ですが、閲覧ついでにご回答いただけると嬉しいです。宜しくどーぞ。

  • 高校数学 面積・体積不等式?について教えてください

    高校数学 面積・体積不等式?について教えてください こんにちは。 大学入試関係のホームページに以下の不等式が面積・体積不等式 ということで載っておりましたが、いったいどんな図形に対して このような式がいえるのでしょうか。 お分かりになる方がいらっしゃいましたら教えていただけると 助かります。 (a^3+b^3+c^3-3abc)^2≦(a^2+b^2+c^2)^3  等号成立条件:a^3+b^3+c^3-3abc=0 よろしくお願いします。