不等式証明と命題真偽

このQ&Aのポイント
  • 実数a、b、cに対して、等式 |a|+|b|+|c|=|a+b+c| が成立するための条件は、ab+bc+ca≧0 である。
  • 不等式 |a|+|b|+|c|≧|a+b+c| を証明する。
  • 結論として、等式 |a|+|b|+|c|=|a+b+c| が成立するとき、a,b,cはab+bc+ca≧0 を満たす。また、ab+bc+ca≧0 が成立するとき、a,b,cは等式 |a|+|b|+|c|=|a+b+c| を満たす。
回答を見る
  • ベストアンサー

不等式の証明と命題の真偽(基本的)

お世話になっております。 実数a、b、cに対して、 等式 |a|+|b|+|c|=|a+b+c|…P が成立つことは、ab+bc+ca≧0 …Q が成立つための○○条件である。(○の数は特に意味なし) という問題です。証明も合わせて(不等式を証明して、等号成立条件を調べてから命題を考えてみたかった為)以下のように考えてみました。 まず証明。 与えられた等式を考える前に、不等式 |a|+|b|+|c|≧|a+b+c|…(2)を証明する。 (2)の両辺は正または0であるから、両辺の二乗の差を考えて (|a|+|b|+|c|)^2-|a+b+c|^2 =2{|ab|+|bc|+|ca|-(ab+bc+ca)} =2{(|ab|-ab)+(|bc|-bc)+(|ca|-ca)}…(3) ここで、|ab|≧ab,|bc|≧bc,|ca|≧ca だから、(3)≧0。従って不等式(2)は成立つ。等号成立は、ab≧0,bc≧0,ca≧0…(4) より、ab+bc+ca≧0 の時に限る。 よって、等式Pが成立つとき、a,b,cはQを満たす。(ここが一番曖昧です) 逆にQが成立つとき、(4)が成立つから、積の場合分けで導かれる二つの場合で、 a≧0かつb≧0かつc≧0 のときは、Pは成立つ。 a≦0かつb≦0かつc≦0 のときはPは、 左辺=-a-b-c=-(a+b+c)=右辺 より成立つ。 以上より、○○は必要十分条件が適当と思す。 以上、拙いですが頭捻ってみました。当方が微妙だと感じるのは、不等式の証明についての説明部分(解答ではb+cを一括りにしてaと(b+c)の二変数と考えて、二変数については不等式が成立つことを利用して証明してました)と、既に書いた通り、条件Pが十分条件であることの説明部分(こちらは解答なし)です。 長ったらしい文で恐縮ですが、閲覧ついでにご回答いただけると嬉しいです。宜しくどーぞ。

質問者が選んだベストアンサー

  • ベストアンサー
  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.1

こんばんわ。 なんか微妙な感じのにほひが・・・ >与えられた等式を考える前に、不等式 >|a|+|b|+|c|≧|a+b+c|…(2)を証明する。 なぜここで「不等式」を考えたのかが、一つ目の「?」です。 普通に(左辺)-(右辺)でいいと思うのですが。 そして、 > (|a|+|b|+|c|)^2-|a+b+c|^2 > =2{(|ab|-ab)+(|bc|-bc)+(|ca|-ca)}…(3) > ここで、|ab|≧ab,|bc|≧bc,|ca|≧ca だから、(3)≧0。 ここまではいいのですが、等号成立は |ab|+ |bc|+ |ca|- (ab+ bc+ ca)= 0 のときとしか言えないはずです。 ((3)式における個別の |xy|- xyの項が 0とは言えない) これが言えれば、そのまま ab+ bc+ ca= |ab|+ |bc|+ |ca|≧ 0が示されます。 となると、逆を示すところも危うくなってきます。 というよりも、簡単に反例が見つかります。 a= 2, b= 2, c= -1のとき、 ab+ bc+ ca= 0ですが、命題:Pは成り立ちません。

dormitory
質問者

お礼

naniwacchi様 お久しぶりです。 数学で詰むかも知れませんが、めげませんよ(半泣半笑) 改めて参考書読み返します。

関連するQ&A

  • 不等式の証明(やや発展)

    お世話になっております。 a,b,cは実数、a+b+c=0であるとき、不等式 (|a|+|b|+|c|)^2≧2(a^2+b^2+c^2) を証明せよ。また、等号が成立つときはどのようなときか。 という証明問題について質問です。証明自体はそれほど難しくは無いのかな、と思ってますが…。 a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)=0-2(ab+bc+ac)と出来ますから、 左辺-右辺=-{(a+b+c)^2-2ab-2bc-2ca}+2(|ab|+|bc|+|ca|)=2{(|ab|+ab)+(|bc|+bc)+(|ca|+ca)}…(1) 常に、|ab|≧-abであるから、|ab|+ab≧0、(bc、caについても同様)であるから、(1)≧0。与えられた不等式は成立つ。 ここで質問。等号成立条件が分かりません。不等式の証明より、|ab|=-ab(bc、caも同様)が成立つ時だと思うのですが略解によると、 a、b、cの少なくとも一つが0であるときなのだそうです。何故でしょう…。  a,b,cのうち少なくとも一つが0 ちゅうことは、a=0またはb=0またはc=0 ということになろうかと思います。ということは、更にabc=0 という式も言えるハズです。しかし、当方の不等式の証明の仕方が不適切なのか、abc=0 を導く根拠が見当たりません。

  • a≧1、b≧1、c≧1のとき次の不等式が成り立つことを示せ。

    (a^3-1/a^3)+(b^3-1/b^3)+(c^3-1/c^3)≧3(abc-1/abc) (左辺)-(右辺)=Pとおく。 P=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) -(1/a+1/b+1/c)(1/a^2+1/b^2+1/c^2-1/ab-1/bc-1/ca) a≧1、b≧1、c≧1であるから、 a+b+c≧3≧1/a+1/b+1/c>0・・・(1) (1)により(a^2-1/a^2)+(b^2-1/b^2)≧2(ab-1/ab) (b^2-1/b^2)+(c^2-1/c^2)≧2(bc-1/bc) (c^2-1/c^2)+(a^2-1/a^2)≧2(ca-1/ca) 辺々を加えて、両辺を2で割ると a^2+b^2+c^2-ab-bc-ca≧1/a^2+1/b^2+1/c^2-1/ab-1/bc-1/ca =1/2{(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2}            ≧0・・・(2) (1)、(2)によりP≧0 したがって、与えられた不等式は成り立つ。 等号はa=b=cのとき成り立つ。 >(1)、(2)によりP≧0 自分にはこれでは分かりづらいです。 具体的に数字決めて確かめては見たのですが、何かスッキリしません。 もう少し分かりやすく説明して頂けると幸いです。 >等号はa=b=cのとき成り立つ。 これはどこから導けばいいのでしょうか?

  • 絶対値を含む不等式の証明がわかりません

    (問)次の不等式を証明せよ。 1.|a+b+c|≦|a|+|b|+|c| (答) |a+b+c|≦|a|+|b|+|c| =2{(|ab|-ab)+(|bc|-bc)+(|ca|-ca)}≧0 ここからどうやってやるのかがわかりません。 |ab|≧abだから、 (|ab|+|b|)^-|a+b|^=2(|ab|-ab)≧0 したがって|a+b|^≦(|a|+|b|)^ よって、|a+b|≦|a|+|b| をうまく利用して証明するみたいなんですけど‥ 解説よろしくお願い致します。

  • 不等式の証明

    a,b,cが実数のとき、 |ab(a^2-b^2)+bc(b^2-c^2)+ca(c^2-a^2)|=<M(a~2+b^2+c^2)^2を満たす最小のMの 値を求めよ。 |ab(a^2-b^2)+bc(b^2-c^2)+ca(c^2-a^2)|/(a^2+b^2+c^2)^2 の最大値を求めれば よいのかと思いました。 a>=b>=cで考える。 分母・分子をa^4で割る。 b/a=x,c/a=yとおくと |(1-x)(1-y)(x-y)(x+y+1)|/(1+x^2+y^2)^2 この最大値を考えようとしましたが、挫折しました。 よろしくお願いします。 一般的に変数が2個のときは、不等式の証明はそう難しくないと思うのですが、 3個になったときは、どのように考えていくといいのか・・・。いつも行き当たりばったり の証明で、先を見通した証明ができず、挫折してしまいます。

  • 不等式の証明

    a,b,cはabc=1を満たす実数のとき、 (a-1+1/b)(b-1+1/c)(c-1+1/a)=<1 が成り立つことを示せ。 (a-1+ac)(b-1+ab)(c-1+bc)=<1を示すことと同じ。 a=<b=<cで考える。 (1)a>1のとき、abc=1を満たすa,b,cは存在しない。 (2)a=1のとき、b=c=1 以外になく、このとき、不等式は成り立つ。 (3)a<1のとき、(a-1+ac)の正負は、a=1/(1+c)を境に変わる。   ア.a=<1/(1+c)のときは不等式の左辺は負または0になるから、成り立つ。   イ.a>1/(1+c)のとき、相加相乗平均より、   左辺=<{(a+b+c-3+ab+bc+ca)/3}^3 これが、1以下を示せばよいと思いましたが、   a=1/2,b=1,c=2とすると、(a+b+c-3+ab+bc+ca)/3が1より大きくなってしまいます。   どこが間違っているのか、よくないのか。よろしくアドバイスをお願いします。

  • 不等式の問題ですが。

    数学Aの不等式の問題でわからない所があるのですが。 3(a^2+b^2+c^2)≧(a-b-c)^2を証明せよ。と書いていまして。 3(a^2+b^2+c^2)≧(a-b-c)^2 =2a^2+2b^2+2ab-2bc+2ca =(a+b)^2+(b-c)^2+(c+a)≧0 よって3(a^2+b^2+c^2)≧(a-b-c)^2 また、等号が成り立つのは、a=-bかつb=cのときである。 わからない所は、等号が成り立つのは、a=-bかつb=cの所で。 どうしてa=-bかつb=cになるのですか? 不等式がわからないので詳しく教えてくださいお願いします。

  • 数II 不等式の証明

    御世話になっております。 教科書一冊、参考書一冊で数学を独学中の者です。 例えば、不等式a^2+b^2+c^2≧ab+bc+caを証明しろ という問題。また、これに限らず、二次の不等式の証明は、証明の大筋をざっくり掴んだ当方には中々その解法の流れが掴めずにつまずいております。なぜなら、p⇒qの形をとらずにいるためです。 実数の二乗は0以上という基本は踏まえてます。しかし、不等式の左辺-右辺を平方完成する意味も中々掴めません。 平方完成する意味とか含めて、不等式の証明についてざっくりと御説明下さると助かります。御自身の解釈の範囲で構いません。宜しくお願い致します。

  • 不等式の証明について

    コーシー・シュワルツの不等式の特別な場合についての問題です。 (3)の代入後の式整理についてご教示いただければと思います。 解答によると、(3)で(2)の結果の不等式を使い、d=a+b+c/3とおいて代入したときの右辺が a^2+b^2+c^2/3 になるようなのですが、導かれるまでの過程がわかりません。 そのまま代入して計算しますと  a^2+b^2+c^2+(a+b+c/3)^2/4 =1/4(9a^2+9b^9c^2+a^+b^2+c^2+2(ab+bc+ca)/9) =1/4(10(a^2+b^2+c^2)+2(ab+bc+ca)/9) となって行き詰まってしまいます。 左辺は代入して整理しすぐ(a+b+c/3)^2と変形できたのですが右辺がわかりません。 ご教示よろしくお願いいたします。

  • 等式・不等式の証明

    a>0,b>0のとき、次の不等式を証明せよ。 また、等号が成り立つ場合を調べよ。 〔解〕 (a + 1/b)(b + 1/a)≧4 (a + 1/b)(b + 1/a)=2+ab+(1/ab) a>0,b>0 より ab>0,1/ab>0 よって 2+ab+(1/ab)≧2+2√ab×1/ab       =2+2       =4 ゆえに(a + 1/b)(b + 1/a)≧4 等号が成り立つのは、ab=1/ab より ab=1 のとき 上に問題と模範解答を写したのですが、 「等号が成り立つのは、ab=1/ab より ab=1 のとき」の部分がわかりません。 ab=1/ab はどこから出てきたのですか?

  • ヤングの不等式の等号成立について

    ヤングの不等式ab≦(a^p)/p+(b^q)/qで 等号成立がa^p=b^q とあるのですが、これの証明ってどうやるのでしょうか? どの本を見ても「明らか」としか書いてないので・・・