• ベストアンサー
  • 暇なときにでも

長さの求めかた

AB=6、AC=3、∠A=120度の△ABCにおいて、∠Aの2等分線と辺BCとの交点をDとし、△ABCの外接円と直線ADのA以外の交点をEとするとき、DEの長さを求める方法を教えてください △ABCを余弦定理で求めると (BC^2)=(6^2)+(3^2)-2*3*6*(cos120度) =63 BC=3√7 ADが∠CABの二等分線であるから ∠CBE=∠CAE=60度 ∠BCE=∠BAE=60度 △BCEは三角形 BC=CE=3√7 までは理解が出来たのですが △DBAと△DCEがなぜ相似になるのか分かりません。 御願いします。 それから、相似を使わない解き方も教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数154
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • debut
  • ベストアンサー率56% (913/1604)

>3^2+AD^2-2×3×AD×Cos(60°)=(√7)^2   で、AD=xとすると、cos60°=1/2だから   9+x^2-3x=7 から x^2-3x+2=0 と2次方程式が   できて、(x-1)(x-2)=0 より x=1,2・・(1)  同様に、△ABDで余弦定理より   6^2+AD^2-2×6×AD×cos60°=(2√7)^2 で、   AD=x として x^2-6x+8=0を解いて、x=2,4・・(2)  (1)、(2)からx=2=AD >∠BAE=∠BCE >と、もう一つの共通の角はどこか教えてください。   これは、対頂角だから ∠ADB=∠CDE   もしくは、円周角だから ∠ABC=∠AEC です。  よって、△DBAと△DECが相似になる  対応する辺はABとCE、BDとED、DAとDCなので、  BD:DA=ED:DC となって、あとは数値を入れてDEを計算です。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 図形

    AB=6、AC=3、∠A=120度の△ABCにおいて、∠Aの2等分線と辺BCとの交点をDとし、△ABCの外接円と直線ADのA以外の交点をEとするとき、DEの長さを求める方法を教えてください △ABCを余弦定理で求めると (BC^2)=(6^2)+(3^2)-2*3*6*(cos120度) =63 BC=3√7 までは考えたのですがその後が分かりません

  • 三角形の長さ

    三角形ABCにおいて角Aの外角の二等分線と辺BCとの交点をDとする。また角Bの内角の二等分線と辺CAとの交点をEとしADとBEとの交点をFとする。AB=9、BD=6、AF=3のとき、EDとAEをもとめろという問題で、AFとFDの比を出すとこまではできたんですがその先がわかりません。余弦定理を使っては解けたんですがほかのやり方をあるそうなんですがそれを教えてください。

  • 高校数学 三角比 

    「三角形ABCにおいてAB=3、AC=4、角A=120°、角Aの二等分線とBCの交点をDとするとき、ADの長さを求めよ。」って問題があったんですけど、解答に「余弦定理は使えないから面積を使って解け」とありました。確かに余弦定理と二等分線による対辺の比の関係を使うと計算が複雑になって答えにたどり着けませんでした。ですが、なぜ余弦定理が使えないのかわかりません。学校に行ってないもんで、聞ける人がいなくて困っています。どなたか教えてください。

その他の回答 (3)

  • 回答No.4

面積で解くのはどうでしょうか? △ABCを余弦定理で求めると (BC^2)=(6^2)+(3^2)-2*3*6*(cos120度) =63 BC=3√7 ADが∠CABの二等分線であるから ∠CBE=∠CAE=60度 ∠BCE=∠BAE=60度 △BCEは正三角形 BC=CE=3√7 までわかっているなら、 まず、AD=xとおいて、△ABCの面積=△ABDの面積+△ADCの面積から、 ADの長さを求める。→AD=2 AE=yとおいて、四角形ABECの面積=△ABEの面積+△ACEの面積 また、四角形ABECの面積=△ABCの面積+△BCEの面積より、 △ABEの面積+△ACEの面積=△ABCの面積+△BCEの面積が成り立ち、AEの長さが求められる。→AE=9 従って、DE=AE-AD=7

共感・感謝の気持ちを伝えよう!

質問者からのお礼

長い間どうもありがとうございました。 この問題は理解することが出来ました。 どうもありがとうございます。

  • 回答No.2
  • debut
  • ベストアンサー率56% (913/1604)

この前の回答ではだめでしたか? 覚えておいて損はない図形の性質だと思うんですが・・・  △ABCがあり、∠Aの二等分線とBCとの交点をDとするとき、  辺の長さには、AB:AC=BD:DC が成り立つ これが使えれば、点Dについては  AB:AC=6:3=2:1なのでBD:DCも2:1になります。 BC=3√7なので、BD=2√7、DC=√7 このDCと、∠BCE=60°、CE=3√7 から、 △CDEで余弦 定理を使えば DEは求まると思うのですが・・

共感・感謝の気持ちを伝えよう!

質問者からの補足

前回は補足の回答をずっと待っていたのですがなにも返信がなくて新たに質問しました。 三角形ACDにおける余弦定理の場合 3^2+AD^2-2×3×AD×Cos(60°)=(√7)^2 までは分かったのですが AD=1or2をどうして代入するのか分かりません。 △DBAと△DCEがなぜ相似? についてなのですが、 円周角より ∠BAE=∠BCE と、もう一つの共通の角はどこか教えてください。

  • 回答No.1
  • redowl
  • ベストアンサー率43% (2140/4926)

>△BCEは三角形 △BCEは 正三角形 >△DBAと△DCEがなぜ相似 2角相等を証明すればいい。対頂角と円周角を見つけるだけ・・・

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 二等分線

    三角形 ABC において,BC=4,AC=6,∠B=60°とします. ここで,∠Aの二等分線とBCの交点をD,∠Cの二等分線とABの交点をE, ADとCEの交点をFとしたとき, (1)∠AFCを求めよ. (2)AE+CDを求めよ. という問題があったのですが, (1)は120°とわかりました. (2)のほうは余弦定理等を使うと6と求まったのですが, 中学の範囲で解くにはどのようにしたらよいのでしょうか. AB:AC=BD:DC などを使うとは思うのですが… ヒントをお願いします.

  • 三角比の応用

    ∠A=60゜,CA=5,AB=8の△ABCにおいて∠Aの二等分線がBCと交わる点をDとするときADの長さを求めよ。 これは余弦定理で解くんですか? 二等分線というのも分からないです。

  • 角の二等分線の長さの求め方について。

    問題. a=7, b=5, c=3 の△ABCにおいて、∠Aの二等分線が辺bcと交わる点をDとするとき、cosAと線分ADの長さを求めよ。 角の二等分線の長さの求め方なのですが、参考書にのっている解き方は、△ABD+△ADC=△ABCとして、面積を使ってといたり、cosBを求めて、△BADで余弦定理を使って解いています。解説も理解できます。 ただ、せっかくcosAを求めていて、∠BADが60°(角の二等分線より)と分かっているのですから、これを使い、私が立てた式は (21/8)^2 = (3)^2 + (ad)^2 - 2*3*ad*1/2 書き方がよく分からないので、二乗は^2 掛け算は* で表しています。これは、△BADで余弦定理を使ったものです。ad を x と置くと 441/64 = 9 + x^2 -3x となり、xは求まるはずです。で、これを解の公式で解いた結果、15/8 と 9/8 という答えになりました。前者が、本に載っている答えと一致しているのですが、私の解き方で解いた場合、どうやって、後者の答え(9/8)は違うと判断するのでしょうか? 数年ぶりに数学をやることになり、計算ミスや基本的なことが抜け落ちているかもしれませんが、どうぞよろしくお願いします。

  • 二等分線定理の余弦定理による証明

     三角形ABCにおいて、角Aの二等分線を引き、BCとの交点をDとします。AB=a、AC=b、BD=c、CD=dとすると、a:b=c:dとなります。俗に二等分線定理と呼ばれるものですが、これを余弦定理によって証明する方法を教えていただけますでしょうか。  証明法は数ほどありますが、余弦定理を使ったやり方がわかりません。 

  • △ABCにおいて、AB=5・・・・

    △ABCにおいて、AB=5、BC=6、CA=3のときcosB=□である。 また、このとき、∠Aの二等分線と辺BCの交点をDとすると、ADの長さは□である。 cosBは解けました。 cosB=13/15 ADの長さを求めるには 余弦定理 AD^2=AB^2+BD^2-2・AB・BD・cosBに代入しますよね。 ですがBDは長さが分からないので代入できません。 BDはどのようにして求めるのでしょうか?

  • 図形と計量

    △ABCにおいて、∠Aの二等分線と辺BCの交点をDとする。 AB=c, AC=b, AD=dとおく。 ∠BADをθとするとき、cosθをc,b,dで表せ。 という問題です。 △ABDにおいて余弦定理を使いたいのですが、辺BDの長さが求められないので使えないです。 このやり方であっていますか? だとすると、辺BDの長さはどうして求めるのか教えてほしいですm(__)m ちなみに、この前の問題で… 角の二等分線と比により、BD:DC=c:b ということは、示しています。

  • 数学を教えてください。

    先ほど質問させていただいた者です。また同じようなことから投稿させていただきました。基本的な問題ですが、ご解答よろしくお願いします。 △ABCで∠Aの2等分線とBCの交点をDとする。また、Cを通るABに平行な直線と∠Aの2等分線との交点をEとする。 1、△ABDと△ECDが相似であることを証明せよ。 2、AB:BD=AC:CDを証明せよ。 以上です。 自分の答えです。 1、AB//CEであるため  錯角により∠BAE=CEA  同じく∠ABC=∠BCEとなる。  三角形の相似条件(2つの角が等しい)ことから  △ABDと△ECDは相似である。 2、△ABDと△ECDは相似であることから   AB:BD=EC:CDとなる。   次にAB//CEのため錯角により∠CAE=∠CEA   ∠Aには二等分線が引かれているため、∠CEA=∠CAEと   なることから△ACEは二等辺三角形である。   ∴EC=ACとなるのでAB:BD=AC:CDとなる。 考え方はあっているのでしょうか?また自分が出した答えは数学の証明になっているのでしょうか?…正しい証明のしかたを教えてください。 よろしくお願いします。

  • 分からない問題

    △ABCにおいて,AB=8,AC=4,A=120度とする。∠Aの二等分線と辺BCとの交点をDとするとき,次のものを求めよ。 △ABCの面積と線分ADの長さ この問題が分かりません。 教えてください!

  • 三角比の問題です

    数学IAの問題です 最初の問題を余弦定理を使い解こうとしたのですが、答えがcosC=1になってそこからがわからなくなりました 解き方や途中式を教えていただきたいです 面倒かと思いますが、できる方協力してくださるととてもありがたいです よろしくおねがいします △ABCでAB=√7、BC=3、CA=2とします (1)cosCはなにか ∠Cはなにか (2)△ABCの面積はなにか (3)cosA、sinBはなにか (4)△ABCの外接円の半径はなにか (5)∠Cの二等分線と辺ABの交点をDとすると AD、DCはなにか 多くてすみません 全部じゃなくてわかるところまででもいいのでお願いします

  • 三角関数

    「AB=2,BC=3,CA=4の△ABCがある。∠BACの2等分線と辺BCとの交点をDとする。線分ADの長さを求めよ。」 という問題で、△BADの余弦定理からADを求めると、√6、1/2√6となりました。回答は√6なのですが、1/2√6が不可である根拠を教えてください。ちなみに解答は面積から求める方法でした。

専門家に質問してみよう