• ベストアンサー

部分分数とか言うのですか?

∫(f(y)dx)=∫(f(y)(dx/dy)dy)=(dx/dy)∫(f(y)dy) どうすれば(dx/dy)が積分の外に出るのですか? 勉強中の本にこれだけしか書いてなくて先に進んでるので困ってます。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

xをyの関数としているので一般にでません。 dx/dy=定数ならでます。

noname#13777
質問者

お礼

やっぱりそれですか。どうもありがとう。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 累次積分の順序変更

    累次積分の積分順序の変更 累次積分 ∫(1→2)dy∫(y-1→y+1)f(x、y)dx の積分順序を変えよ 1≦y≦2 y-1≦x≦y+1 だから。 xy平面にグラフを書く。 すると平行四辺形がかけました。 ↑の累次積分ではxの積分→yの積分の順序なので yの積分→xの積分に順序を変えます。 以上からグラフの形より積分を3つに分けて {∫(0→1)dx∫(1→x+1)f(x、y)dy}+{∫(1→2)dx∫(1→2)f(x、y)dy} +{∫(2→3)dx∫(x-1→2)f(x、y)dy} このようになりました。 わざわざ3つにわける必要はなかったでしょうか? そもそもやり方はあってるのでしょうか。。。 どなたか教えていただけないでしょうか!

  • 重積分の順序の交換

    非有界な関数f(x,y)を重積分(0≦x≦1,0≦y≦1)することを考えます。 具体的にはf(x,y)=(x-y)/(x+y)^3です。 この時、xで先に積分するか、yで先に積分するかで値が変わることはありますか? 僕が行った計算では、変数変換(x,z)=(x,x+y)とすると、ヤコビアンは1でdxdy=dxdzで、 ∫_0^1 dx ∫_0^1 f(x,y) dy =∫_0^1 dx ∫_x^{x+1} (2x-z)/(z^3) dz =∫_0^1 dx 1/(x+1)^2 = 1/2 zの積分はxを定数として計算しています。 ここで、逆の順序で積分すると、xとyの変数を入れ替えたものは等しいので、 ∫_0^1 dx ∫_0^1 (x-y)/(x+y)^3 dy =∫_0^1 dy ∫_0^1 (y-x)/(x+y)^3 dx = - ∫_0^1 dy ∫_0^1 (x-y)/(x+y)^3 dx =1/2 よって、 ∫_0^1 dy ∫_0^1 (x-y)/(x+y)^3 dx = -1/2 だと思うのです。 また、直感的には、交代式を直線x=yに対称な領域で積分するなら、 ∫_0^1 dx ∫_0^1 (x-y)/(x+y)^3 dy = 0 が正しいとも思えます。 どうかこの辺の事情をお教えください。

  • フビニの定理について

    フビニの定理 もし、f(x,y)が可積分ならば、 ∫f(x,y)dx,∫f(x,y)dy がa.e.で存在していて、ともに可積分であり、等式 ∫f(x,y)dxdy=∫[∫f(x,y)dy]dx=∫[∫f(x,y)dx]dy が成り立つ。 それで、 f(x,y)が可積分でないときは、上式の第2式と第3式が存在しても、 その値が異なる場合がある例として、  1 1 ∫[∫(x^2-y^2)/(x^2+y^2)^2 dy]dx=π/4   0 0  1 1 ∫[∫(x^2-y^2)/(x^2+y^2)^2 dx]dy=-π/4   0 0 となるそうなのですが、この積分結果が導出できなくて困っています。 部分分数展開やら試してみたのですが、どうもうまくいきません。

  • (d/dx)∫(a~b)f(x,y)dy=∫(a~b)(d/dx)f(x,y)dyの成立条件

    (d/dx)∫(a~b)f(x,y)dy(つまり、f(x,y)をyで積分(定積分)したものをxで微分したもの)を考えます(ただし、(a~b)は積分範囲を表し、aやbは定数であって、xの関数ではありません)。 これは多くの場合、∫(a~b)(d/dx)f(x,y)dy(つまり、f(x,y)を先にxで微分してからyで積分したもの)と等しくなります。しかし、まれに一致しない場合があります。例としては、f(x,y)=(sin xy)/y (x>0)の場合が挙げられます。 そこで、 (d/dx)∫(a~b)f(x,y)dy=∫(a~b)(d/dx)f(x,y)dy が成立するための必要十分条件を教えていただきたいと思っています。 もし簡単には述べられない条件でしたら、何のどこを参照すればこのことが論じられているのかを具体的にご教示いただけると幸いです。

  • 分数の積分について

    ∫[0→1]∫[0→1] (x-y)/(x+y)^2 dy dx を解こうと考えているのですが、 この積分はx=r*cosθ y=r*sinθと置換し、ヤコビアンrをかけて積分すればよいのでしょうか? それとも、(x-y)/(x+y)^2をそのまま(x-y)*(x+y)^(-2)として解けばよいのでしょうか? アドバイスよろしくおねがいします。

  • dy/dx (y+1)を積分して(y+1)^2?

    次の微分方程式の一般解を求めよ。 (1+y) (d^2y)/(dx^2) + (dy/dx)^2 = 0 dy/dx = p とおくと、      (1+y)p (dp)/(dy) + p^2 = 0 となり、      (i) (1+y) (dp)/(dy) + p = 0      (ii) p = 0 の2通りが考えられる。 (i)の場合      1/p (dp)/(dy) + 1/(1+y) = 0 の両辺をyで積分して      log |p(y+1)| = C_1 つまり、      dy/dx (y+1) = C_1 両辺をxで積分して、      (y+1)^2 = C_1x + C_2     ←? という解を得る。 ・・・と本に書いてあります。しかし、 「両辺をxで積分して」の計算は間違ってないですか? 自分が計算すると、      dy/dx (y+1) = C_1      ∫ (y+1) dy/dx dx = C_1∫dx      ∫ (y+1) dy = C_1∫dx      ∫y dy + ∫1 dy = C_1∫dx      y^2/2 + y = C_1x + C_2 になります。 積分して(y+1)^2になるなら、元々は2(y+1)じゃないといけないですよね、きっと。 ということで、どなたか検算をお願いします。

  • 2階微分方程式について(続けての質問ですいません)

    y''=f(y)の一般解の求め方で 両辺に2*y'をかけて、xで積分すると (y')^2 = 2*∫f(y)dy + C_1 になると書いてあるのですが 右辺は求められたんですが左辺がどうしてそうなるのかがわかりません。 自分でやった計算では ∫(y'' * 2*y')dx =∫(y'' * 2*(dy/dx))dx =2*∫(y'')dy =2*y' となってしまいます。 なんとなく間違ってるとは思うのですが 正しい方法がわからないのでアドバイスお願いします。

  • 積の微分の公式 (dfdg/dx)=0?

    y=f(x)×g(x)の微分は,(dy/dx)=(df/dx)g+f(dg/dx)だと思います。(微分そのまま+そのまま微分)と暗記しました。この公式の証明として,次のような説明を見付けました。 (y+dy)=fg+gdf+fdg+dgdf y=fgより dy=gdf+fdg+dgdf 両辺をdxで割ると (dy/dx)=g(df/dx)+f(dg/dx)+(dgdf/dx) よって,微分そのまま+そのまま微分が成り立つ。(右辺第3項 dgdf/dxですが,dgdfは微少量同士のかけ算ですから無視しているようです。) 質問1 右辺第3項は無視しても良いのでしょうか。 次に,右辺第3項を無視したまま,上記の式をxで積分したときに元に戻るかどうか試しました。 y=fgより,f=y/g g=y/f (dy/dx)=(y/f)(df/dx)+(y/g)(dg/dx) 積分記号(1/y)dy=積分記号(1/f)df+積分記号(1/g)dg log|y|=log|f|+log|g| log|y|=log|fg| y=fg  となり,元の原関数が導けました。 質問2 右辺第3項を無視したままxで積分して元に戻るかどうか試したのですが,元に戻りました。 私のした積分の計算はあっているのでしょうか。(右辺第3項を無視したまま計算を始めたことが気になります。)

  • 初歩的な微分方程式について分からないことがあります。

    y´=x/y^2 という微分方程式で、私が読んでいる本に書いてある解法は、 y^2(x)y´(x)=x         xについて両辺を積分すると、 ∫y^2(x)y´(x)dx=∫xdx    …(1) よって 1/3y^3=1/2x^2+C となっていて、(1)のところで両辺を積分していますが、両辺を積分するという演算を行っても良いのでしょうか? そのまま=は成り立つのでしょうか? これは、A=Bのとき、logA=logB というような事と同じと考えて良いのでしょうか? また、本には以下のような別の解法も載っていました。 dy/dx=x/y^2 y^2dy=xdx (両辺にy^2dxをかけて) ∫y^2dy=∫xdx        …(2) よって 1/3y^3=1/2x^2+C (2)のところで、両辺に∫だけを書き加えているのはなぜでしょうか?いつもペアで書く、dxはどうなってしまったのでしょうか? 特に、(2)の左辺ではdxはなく、結果的にdyという表示になっています。yはxの関数であり、xについて積分するのに、(2)の左辺が∫y^2dyとなり、yについて積分するような計算になることがどうしても理解できません。 数学的に厳密でないところや、私の考え方が間違っているところがあるかと思いますが、どなたか教えていただけると幸いです。

  • 線積分における完全微分性および積分路に対する独立性について

    cを経路とすると、 ∫c {F1(x,y)dx+F2(x,y)dy} について、∂F1/∂y=∂F2/∂x が成り立つとき、F1(x,y)dx+F2(x,y)dyは完全微分であると言い、 ∫c {F1(x,y)dx+F2(x,y)dy}は、経路に関係なく始点と終点 だけで決まるというようなことを習いました。 ここで、 ∫c {F1(x)dx+F2(y)dy} は、∂F1/∂y=∂F2/∂xが成り立つので始点と終点を指定して 積分すれば良いということになるのですが、 ∫c {F1(x)dx+F2(y)dy}は、始点と終点を指定して 積分すれば良いということを「直接」偏微分で考えずに、 もっと初等的に、(線)積分の意味などから 考える方法はありませんか? 自分で考えてみたところ、「∫c F1(x)dx では、 F1はxの関数なので、xの値にのみ依存し、例え経路c上の 座標(x,y)が(5,9)であろうと(5,3)であろうとxの値は5になるので、 ∫c F1(x)dxは経路に依存せず、始点と終点を定めて計算すれば 良い」という説明になるのかな?と思いました。 たぶんこれは、∂F1/∂y=∂F2/∂xが成り立つことを間接的に説明 しているように思えるのですが… この説明はこの説明で良いのでしょうか? 他の説明の仕方があれば教えてください。お願いします。