ベストアンサー 数列について。 2020/12/16 19:42 数学anは等比数列で、その公比は0以上の実数とする、自然数nに対して n n Sn=Σak Tn=Σ(-1)∧k-1ak k=1 k=1 n Un=Σak ∧2 k=1 とするときnが奇数ならば、 Sn×Tn=Unが成り立つことを表せ この問題と画像の回答は、合っていますでしょうか?教えていただきたいです。すみません。 画像を拡大する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー f272 ベストアンサー率46% (8529/18257) 2020/12/16 23:10 回答No.1 n n Sn=Σak Tn=Σ(-1)∧k-1ak k=1 k=1 n Un=Σak ∧2 k=1 の意味が分かりません。理解できる式を書いてください。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 等差・等比数列 【1】等差数列{An}に対してSn=Σ(n,k=1)Akとおく。 ここで、初項A1=38、第(m+1)項Am+1=5、Sm+1=258とする。 このときm=○であり、公差は○である。 また、Snはn=○のとき最大となり、その最大値は○である。 【2】等比数列{Bn}の初項B1と公比rは正の数とし、 Tn=Σ(n,k=1)Bkとおく。この数列{Tn}は 5T2=4T4を満たすとする。 ここでT4=(r~2+○)T2であるので、数列{Bn}の公比はr=○である。 さらにpを定数とし、Un=p+Tnとおく。p=○B1であるならば、 数列{Un}は等比数列となる。 【1】 Am+1=38+md=5 Sm+1=(m+1)/2(38+5)=258 m=11 よって38+11d=5 d=-3 An=-3n+41 -3n+41<0 n>41/3より、nが14以上で-3n+41が0より小さくなるので Snはn=13のとき最大 そのきの最大値は S13=13/2(38+2)=260 で合ってるでしょうか。 【2】 Bn=B1・r^n-1 B1>0、r>0 これは全然やり方が分からないんですが、 まず何をやればいいんでしょうか。 数学の等比数列の問題です 第3項が9/8、第6項が243/64である等比数列の第n項をan、初項から第n項までの和をSnとする。anおよびSnをnの式で表せ。また、Sn>=9999となる最小の自然数nを求めよ。必要ならばlog10の2=0.3010 、log10の3=0.4771を用いて良い。ただし公比は実数とする。 という問題なんですけど 解き方がわからないのでどうかよろしくお願いします 数列の問題で質問です 初項が2、公比が正である等比数列anの第3項は18である。また、等差数列bnの第3項は-19で、初項から第8項までの和は-116である。 (1)数列anの公比を求め、anをnを用いて表せ。 (2)bnをnを用いて表せ。また、bn<0を満たす最大の自然数nの値を求めよ。 (3)不等式Σ(k=1からn) ak > Σ(k=1から20) |bk| を満たす最小の自然数nの値を求めよ。 いつもお世話になっております。(1)は自力で解いて公比=3、an=2×3^n-1となりましたが、ここから先が分かりません。その上に(1)にも自信がありません。解き方を教えてください。よろしくお願いします。 等比数列 「2と54の間に2個の実数を入れて、それらが等比数列となるようにしたい。間に入れる実数を求めよ。」 この解答例は、この数列の第2項をα、公比をrとおいて、2,α,αr,54が等比数列になることから導いていました。 私は単に公比をrとおいて、2,2r,2r^2,54が等比数列になることから導きました。 どちらも結果は6と18でした。 答えは合ってましたが、私のやり方は数学的には合っているのでしょうか。 高校 数学の問題です【等差数列と等比数列】 第5項が10、初項から第5項までの和が90である等差数列{αn}がある。 1. 初項と公差を求めよ 2. 初項から第n項までの和Snの最大値を求めよ 第2項が6、第5項が48である等比数列{αn}がある。ただし、公比は実数とする。 1. 初項と公比を求めよ 2. 初項から第n項までの和を求めよ 2008年センター試験数学II追試験第三問数列 2008年センター試験数学II追試験第三問数列 問題 a1=3 an+1=-2an+8(n=1.2.3...)で定める。 (1)にてanとSnを求めたのち、 (2)でTn=Σ|ak|(Σの上はn、下はk=1)について考える。 (2)にて、 n>4のとき、|an|の一般項が求められるところまでは何となく理解できるのですが、 (ほんとはn>4で|an|を求めさせるところの意図がわかってません) そのあとのTnを求める問題で、n>4とあるのに、正解のTnにT4を含めて解としているのが理解できません。n>4なのであれば、求めるTnはΣ|ak|(Σの上はn、下はk=5)でいいのではないでしょうか。 数列の問題です。 数列の問題です。 数列{an}に対して、 sn=a1+a2+……+an tn=s1+s2+……+sn (n=1、2、3……) とおく。 (1) an=2^2n-1|の時、数列{sn}の一般項を求めよ。 (2) an=3の時、数列{tn}の一般項を求めよ。 (3) t1=tn+1|=3tn+(n+1)(n+2)を満たす時、数列{an}の一般項を求めよ。 以上(1)~(3) 解答お願いします。 数列の問題が分かりません (1)初項2 公比3である等比数列について Sn=a1+a2+...+anを求めよ。 (2)初項-4 交差5である等差数列について 第10項から、第19項までの和を求めよ。 数列の問題なのですが・・ 等差数列an=3n-21、bn=9(n^2-10n+21)がある。rは実数とする。 数列cnはc1=140、c4=-23をみたし、数列bnに対して数列{cn-bn} は公比rの等比数列となる。このときのrの値は? また、cn(n=1,2,3・・)の最小値は?そしてcnの初項から第n項までの和 をUnとするとUn(n=1,2,3・・)の最小値は。 考え方と解き方が分かりません。 詳しい解説をどうぞよろしくお願いします。 数学の等比数列を教えて下さい 閲覧ありがとうございます!! 数学の等比数列の問題がわからず、 質問させていただきます。 ○初項3,第4項が81の等比数列anの公比と一般項を求めよ。 という問題です よろしくお願い致します。 数列(an)の初項から第n項までの和をSnとすると 数列(an)の初項から第n項までの和をSnとするとき、次のそれぞれの場合においてanをnの式で表せ。 1、Sn=n(n+1)(n=1,2,...) 2、Sn=1/(n+1)(n=1,2,...) 等比数列(bn)の初項から第n項までの和TnがTn=p-3n+1/4(n=1,2,..)と表されるとき、定数pの値を定めよ。 nを自然数とするとき、次の数列(an)の一般項anを求めよ。 1、-7,-9,-8,-4,-3,-13 2、-5,-3,1,9,25,57 誰かわかる方教えてください 数学B 数学B 数列{an}の初項から第n項までの和Snが、Sn=3n^3+3n^2-2n のとき、anをnの式で表せ。また、 n Tn=Σ (1/ak)をnの式で表せ。 k=1 という問題があるのですがよくわかりません。(どのように手をつけていいのか)どなたか教えてください。(途中式や解説など)よろしくお願いしますm(__)m 数列 n Σk*2^k-1 k=1 を初項をkとして公比を2として等比数列の和の公式で求めるとやばいのは 何でですか? 等比数列の級数 1、11、111、1111、・・・という数列の一般項と初項から第n項までの和Snを求める問題で、一般項は初項1、公比10の等比数列の和となっていることから、一般項が1/9(10^n-1)であることがわかりますが、 n Sn=Σ1/9(10^k-1) k=1 式の展開で1/9{10(1-10^n)/(1-10)-n}と展開されているのですが、 分子の最初の10は公式から考えれば、初項の1ではないのでしょうか? どうして10となるのかわかりません。 どなたかお分かりになりますか? 数列の問題です 質問がいくつかありますが、よろしくお願いします 次の数列の初項~n項までの和を求めよ 1、1+4、1+4+7 与えられた数列の第k項をAkとし、求める和をSnとする ここで一つ目の質問です! なぜn項まで求めよといわれてるにもかかわらず、第k項までの一般項を求め和を出そうとするんでしょうか 続き Ak=1+4+7+・・・+{1+(k-1)・3} ここで二つ目の質問です! この式はどのようにして出したんですか? 1、1+4、1+4+7 という数列にもかかわらず2項目1やら3項目の4はどこへ消えてしまったんでしょうか? そして最後の質問です Σというのは和を表すと書いてあるんですが ならば 等差、等比数列の和の公式は必要なくありませんか? またはΣ公式などを使わなくても全て等差、等比数列の和の公式でできるんじゃないでしょうか? なぜわざわざ分けているのでしょうか? 質問が多くて恐縮ですが 解説よろしくお願いします。 階差数列 6 11 18 27 38 と続く 数列の 初項から第n項までの和 Sn=Σak (Σの上にn下にk=1と書いてあります) わかるかたいらっしゃいますか?? まったくわからないです(´-ω-) ちなみに an=n二乗+2n+3と出ています 数列の問題です 数列anの初項から第n項まあでの和をSnとする。 (1)Sn=1/2n^2+nが成り立つ時(i)一般項an(ii)Σ(k=1~n)kakの値(iii)Σ(k=1~n)1/ak・ak+1の値 (2)Sn=3an+4n+2が成り立つ時(i)a1の値(ii)an+1をan表わせ(iii)一般項anを求めよ 上の2つの問題の答えをどなたか教えてください。 特に(1)は解答の過程も教えていただけると幸いです。 よくわかりません・・ 数列{an}は初項a1=2で、第3項a3=-1/2である。 n k-1 Sn=Σ(-1)・ak (n=1,2,3・・・・・) ・・・ k=1 とするとき、数列{Sn}は等比数列となった。 数列{an}の第n項anを求めよ。 この問題がいまいち理解できないです・・ n n-2 答えはn=1のときan=2でn≧2のときan=(-1)/2 になるんですが解説がなくよくわかりません。 どうしてこうなるのでしょうか?よろしくお願いします。 階差数列の解き方 {an}:1,2,5,10,17,26,・・・ などの等差数列を使う階差数列は分かるんですけど {an}:5,6,4,8,0,16,-16,48・・・ の時に一般項anを求める等比数列を使う階差数列の解き方がわかりません。 この場合、初項1、公比-2の等比数列の和を求めて anの初項5を足したらいいんでしょうか? 数列 Σの計算なのですが… 答えがあいません汗 次の和を求めよ。 1) n Σ 2^i+1 i=1 2) 18 Σl^2 l=6 1)は、初項2 公比2の等比数列の和を求めて、 Sn=2(2^-1)/2-1=2(2^2-1)になったんですが、 答えは2のn+2乗-4です(>_<) 2)の答えは、2054です。 解き方を教えて下さい。