• ベストアンサー
  • 暇なときにでも

陰関数微分法で、2x/yを微分するとどうして、、

教科書で理解できない箇所がありましたので、教えてください。 dy/dx=2x/y ・・・(1) d²y/dx²=((y)(2)ー(2x)(dy/dx))/y² これに(1)を代入して d²y/dx²=((2yー2x(2x/y))/y²=(2y²-4x²)/y³ になるらしいいんですけど そもそも、なぜdy/dx=2x/yを微分するとd²y/dx²=((y)(2)ー(2x)(dy/dx))/y²になるにか分りません。 どなたか教えていただけませんか? よろしくお願いします

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数158
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

http://w3e.kanazawa-it.ac.jp /math/category/bibun/henbibun/henkan-tex.cgi?target=/math/category/bibun/henbibun/inkansuu-no-bibun.html などを見れば、  f(x,y) = 0    ↓ x で微分  fx + fy(dy/dx) = 0 らしい。 ならば、 >dy/dx=2x/y ・・・(1)   ↓  f(x,y) = dy/dx - 2x/y = 0   ↓ x で微分  d^2y/(dx)^2 - d(2x/y)/dx = 0 つまり、  d^2y/(dx)^2 = d(2x/y)/dx だろうから、その右辺を勘定。            ↓  d(2x/y)/dx = { 2y-2x(dy/dx) }/y^2 これに dy/dx = 2x/y を代入してチョン。   

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。 とってもわかりやすくて、一瞬で解き方が分かりました。

関連するQ&A

  • 陰関数の微分法

    陰関数の微分法 方程式(x^2/4)ー(y^2/9)=1で定められるxの関数yについてdy/dx、d^2y/dx^2をxとyで表せ。 (解答) (1)(x^2/4)ー(y^2/9)=1の両辺をxについて微分すると、 2x/4-2y/9×(dy/dx)=0 y≠0のときdy/dx=9x/4y (2)d^2y/dx^2=9/4×{(1×y-xy´)/y^2} (2)についてxを定数として扱ってはならないのはyはxの関数だからと書かれているのですが、 このようにyを定数として扱ってはならないものの例がほかにあれば教えてください。 初心者なので他の例(陰関数の微分法以外の例)を知りません。

  • 微分法について

    宜しくお願いします。 「微分法」そもそもの意味がわかりません。 というのも、○○で微分する、というのはどう意味かということです。 y=x^2 を「xで微分する」ということと、「yで微分する」ということの違いはなんなのかがわかりません。 xで微分すればもちろんy'=2xなのですが、yで微分するとどうなるのでしょうか。 接線の傾きを表しているという説明は学校で聞きましたし、理解はしましたが本質的な部分がさっぱり理解できておらず、「微分法という操作」ができるだけです。 「微分する」とはどういうことなのか、分かりやすく教えていただければ幸いです。 もともと悩んでいた問題は以下のものです。 yがxの関数で、関係式2x^2+3y^2=6 (y≠0)が成り立つ時、dy/dxを求めよ 回答では d/dx(2x^2)+d/dx(3y^2)=0 4x+6y・dy/dx=0 dy/dx=-2x/3y とありますが、なぜ4x+6y・dy/dx=0のdy/dx部分が残るのかわかりません。 わかりにくく、抽象的な文章で申し訳ありませんが、ご教授お願いいたします。

  • 微分法の入門書

    微分法を学びたいと思ってます。 ”xの関数yをxで微分すると dy/dx である。” というだけでなく、 dx、dy の意味から説明してくれるような 例えば、dz=2xdy+y^2dxの意味が分かるような入門書が あったら教えてください。お願いします。

  • 合成関数の微分法について

    合成関数の微分公式について質問です dy/dx = dy/du * du/dx この公式の代数的証明は教科書に載っています。 でもなんかしっくりこないです。形式的に見えます 微分っていうのは接線の傾きを求めることなんですよね この認識のもとに立って、合成関数を幾何的な考え方で 納得したいんです。そうでなくても、公式の本質を少しでも 理解したいです。どなたかご教授お願いします。 不明な点は補足します。おっしゃってください。

  • 偏微分、合成関数の微分法

    数学を進めているのですが、偏微分が絡んだ合成関数の微分法がわかりません。 大学数学のテキストは高校のと比べて、読み進めずらいです。助けてください。 (質問本文) 「」は私の理解の仕方と思ってください。まず、公式の理解から私の偏微分の考え方は正しいでしょうか? (1)関数z=f(x、y)にさらにx=x(t)、y=y(t)という関係がある時、「実質1変数で」、dz/dt=(∂z/∂x)×(dx/dt)+(∂z/∂x)×(dx/dt)(「それぞれxとyでzを偏微分して、x、yを今度は1変数なので、微分する」) (2)関数z=f(x、y)にさらにx=x(u,v)、y=y(u,v)という関係がある時,今度は変数が2つuとvがあるので、「どちらか片方で微分して」、∂z/∂u=(∂z/∂x)(∂x/∂u)+(∂z/∂y)(∂z/∂u)(「それぞれ片方の変数x、yでzを微分して(偏微分)さらに、そのx、yを関係式があるuで片方を選んで、uで偏微分する」) 次に、教科書の文章で、f(x、y)=0によって、xの陰関数y=f(x)が定められているとき、y‘=-Fx/Fyをxで微分すると、(dFx/dx)=Fxx+Fyy×dy/dx,dFx/dx=Fyx+Fyy×dy/dx(★)とあるのですが、★の微分はどのように考えて実行しているのでしょうか?(上の教科書の公式では全く上手くいきません)

  • 微分の基本的な質問

    今微分について疑問に思ったのですが、 dy/dxって分数みたいに掛けたり割ったりすることが出来るんでしょうか? 例えば dy/dx=x^3/y だとすると両辺にdxをかけたりして ydy=x^3 dx になって ydy-x^3 dx=0 となり完全微分となり、yについて解くみたいなやり方がありますよね? 後、よく教科書で、dy/dt*dt/dx=dy/dxみたいな感じになってるんですが、 例えば y=x^2 と y=t^5 があったとして、 dy/dx=2x dy/dt=t^5 ですよね? dy/dtを分数みたいに(dy/dt)^-1にして dt/dy=(t^5)^-1 で dy/dx*dt/dy をするとdyが消えますから dt/dx=(2x)*(t^5)^-1 =2x/(t^5) となります でも、元の式に帰ると y=x^2 y=t^5 ですから t^5=x^2になって dt/dx=2x/(t^5)=2x/(x^2)=2/x になります。 しかし、最初の式で t=(x^2)^(1/5) というようにしてから微分すると dt/dx=2/5(x^-3/5) になります。 ということはdx/dyを分数として考えると矛盾が起こるんじゃないでしょうか? ということは教科書は間違っているんでしょうか?;; 誰か助けてください!!

  • 2変数関数の微分法

    g(x、y)=0について、両辺をxで微分すると、合成関数の微分法より、gx+fyy‘=0 z=f(x、y)の両辺をxで微分すると、dz/dx=fx+fy×(dy/dx)とあるのですが、どうしてこうなるのかがわかりません。教えてください。

  • yをxで微分するときの微分の仕方の違いがよくわかりません。

    (1)xy=2の両辺をxで微分すると x'y+xy'=0で 1*y+x*dy/dx=0になるのはとりあえず理解しました。 ですが、 (2)x^2/9+y^2/4=1の両辺をxで微分すると 2x/9+2yy'/4=0となるのがよくわかりません (1)の1*y+x*dy/dx=0で yをxで微分すればdy/dxとなるはずなのに、 なせ(2)では2yy'/4となっているのでしょうか? ここは2ydy/dxとはなぜならないのでしょうか? お願いします。

  • 逆三角関数の微分の解き方

    逆三角関数の微分の問題で (x^2) * (cot(x/2))^(-1) を微分せよって言う問題で y=(x^2) * (cot(x/2))^(-1)として cot(y/(x^2))=(x/2) 両辺をxで微分して (dy/dx) * ( -(1/sin(y/x^2)) * 1/x^2) = 1/2 dy/dx = (-1/2) * x^2 * (sin(y/x^2))^2 = (-1/2) * x^2 * (tan(y/x^2)^2) / ((tan(y/x^2)^2) + 1) cot(y/x^2)=x/2から tan(y/x^2)=2/xで、これを代入して dy/dx= -2x^2 / (x^2 + 4)とだしたのですが 答えは、2x * (cot(x/2))^(-1) - (2x^2 / (x^2 + 4)) となっています。 途中で計算ミスをしているのでしょうか? アドバイスお願いします。

  • sinx^2+cos^2x=1は微分できますか

    x^2+y~2=1を微分して2x+2ydy/dx=oとして導関数がdy/dx=-x/yとなるのでしょうか。また表題の公式も微分の対象になるのでしょうか。