• ベストアンサー

右から読んでも左から読んでも削除しても素数

739397は前から読んでも、後ろから読んでも素数です。しかも、前から一字ずつ削除しても残りは素数で、後ろから一字ずつ削除しても残りは素数です。このような素数の個数を調べるのですが、10億まで調べて11個ありました(23,37,53,73,313,317,373,797,3137,3797,739397)。しかも最大は 739397でした。もっと存在するのでしょうか。どなたかお教えください。 739397,793937ともに素数 739397,39397,9397,397,97,7すべて素数 739397,73939,7393,739,73,7すべて素数

質問者が選んだベストアンサー

  • ベストアンサー
  • jcpmutura
  • ベストアンサー率84% (311/366)
回答No.2

23は素数だけれども 32=2^5は素数ではないので 23は除くべきです 53は素数だけれども 35=5*7は素数ではないので 53は除くべきです 317は素数だけれども 713=23*31 は素数ではないので 317は除くべきです 3137は素数だけれども 7313=71*103 は素数ではないので 3137は除くべきです 3797は素数だけれども 7973=7*17*67 は素数ではないので 3797は除くべきです 739397は素数かもしれないけれども 793937=23*34519 は素数ではないので 739397は除くべきです 1は素数としないので 前から1字ずつ削除すると残りは1で素数でないから 10^10008+941992101*10^4999+1 は 前から1字ずつ削除すると残りは素数でないので 除くべきです 残りは (313) (373,37,73) (797,79,97) の3群で 最大は 797 です

その他の回答 (1)

回答No.1

小生、数学専攻者ではない事を予めお断り・・! エマープ(primeの逆さ読み!):素数でありかつ逆から数字を読むと元の数とは異なる素数になる自然数 2010年3月時点で知られている最も大きなエマープは、 10¹⁰⁰⁰⁶ + 941992101 × 10⁴⁹⁹⁹ + 1 であるらしい・・!? 質問者の考える様な素数を調べる手段は現在の処、コンピュータに頼らざるを得ない状況の様に思う・・! なので、その様な条件を満たす素数を拾い上げる様なアルゴリズムを考え出す事が出来るならば、存在するのか否かを含め追跡は可能と思う・・! (唯、無限に存在するか否かはまた別の話になると思う・・!?)

関連するQ&A

  • 素数について

    素数は無限に存在しますが、その分布の仕方に興味があります。勿論直感的に、大きくなるほど、出現頻度は小さくなるのでしょうが、この範囲では予想外に多いとか、逆に、ある範囲だと、殆どないとかあるんでしょうか?また、素数の現れ方について、何かわかっていることがあるのでしょうか?欲張ってすいません。もうひとつ、私のPC(クロック周波数1.6GHz)で、VBA簡単なマクロを使って、100万までに存在する素数の個数が78498個であることが50秒で計算しましたが、2桁増やして1億までに存在する素数の個数を調べようとしたら、2時間計算しても答えが出ませんでした。途中で強制終了しました。VBAで別のロジックでマクロを組めば1分位で計算できないものでしょうか。「博士の愛した数式」という映画のなかで、家政婦さんの電話番号が偶然、1億までに存在する素数の個数に等しいというシーンがあって、確かめたいと思いました。

  • 素数の問題です。 11から1231までに存在する素数の個数を求めるやり

    素数の問題です。 11から1231までに存在する素数の個数を求めるやりかたと答えを教えてください。

  • 1億までに存在する素数の個数

    1億までに存在する素数の個数は5761455個ということですが、自分のPC(クロック周波数1.6GHz)、言語VBA、よく知られている単純なアルゴリズムで調べると100万までに存在する素数の個数は87498個(所要時間50秒)、1000万までに存在する素数の個数は664579個(所要時間20分)、1億までに存在する素数の個数は6時間かけても、終わらなかったので、強制終了して、インターネットで調べました。ところで、mathematicaでprime(n)、primeQ(n)、primePi(n)という関数があり、1億までに存在する素数はprimePi(100000000)=5761455とすぐ答えが出るそうですが、興味をもったのはその5761455個目の素数です。その答えはprime(5761455)で出るのでしょうが、それが知りたいです。その数は8桁ですか、7桁ですか。また、prime(n)で調べないとしたら、どんなアルゴリズムで調べるのですか。

  • 素数は無限に存在する ことの証明について

    素数が無限に存在することを証明する際に、最大の素数の存在を仮定し、そこから背理法で最大の素数までに存在する全ての素数を掛け合わせてそれに一を足したものについてそれをZとすると 1、Zが素数なら矛盾 2、Zが合成数だとすると、最大の素数までに存在する素数では割り切れないので、Zは最大の素数より大きい素数でわりきれることになりこれは矛盾である したがって、素数は無限にある という証明法がありますが、2は必要なことなのでしょうか? 理屈として必要なのはわかりますが、 Zはそもそも素数なのではないかということです。 といいますのも、例えば小さい数で、2×3+1=7は素数、2×3×5+1=31は素数、2×3×5×7+1=211も素数ということを考えた時、もしかしたら小さい方の素数から連続して掛け合わせた場合には、素数に絶対になるのではないかとおもったからなのですが、そんなことはないのでしょうか?

  • Excelでバイト数の最大数が決まったデータを作りたいんです!

    上手く説明出来ないんですが・・。 エクセルで、項目それぞれにバイト数の最大数が決まったデータを作りたいんです。 例えば ◆職員番号・・・バイト数12(半角)         職員番号は8桁なので、その後ろに残り12バイトまでの半角パディング。 ◆氏名 ・・・ バイト数16(全角8字まで)         全角8文字以内なら、その後ろに残り8文字までの全角パディング。         全角8文字を超す氏名なら、8文字で切る。 ◆カナ ・・・ バイト数58(半角)         半角カナ文字で残りの58バイトまで半角パディング。 *これをcsvに変換します! これを文字列だけ打ち込んだら、自動で最大バイト数まで半角・全角を埋めるようにすることは出来るでしょうか? また、氏名のところのように自動で8文字までの入力しか出来なくするようにすることは出来るでしょうか? 説明が下手で申し訳ないんですが、おわかりになる方ご教授下さい。 よろしくお願いします!!

  • 素数は無限

    質問2点。 1. 「素数は無限に存在する」証明をwikipediaで調べると、 背理法で素数が無数にあることを証明した、 素数の積に1を加えた数が素数であることを証明した」などの誤解をする者がいるが、 いずれも正しくない と書かれています。 wikipediaが常に真実とは限りませんが、 Google検索で素数の無限である証明で検索すると、上記の誤解している人による解説ばかりです。 何を(どちらを)信じればよいか分からずに困っています。 2. wikipediaによる正しい証明によると、、、 素数の個数が有限と仮定し、p1, … pn が素数の全てとする。その積 P = p1 × … × pn に 1 を加えた数 P + 1 は、p1, …, pn のいずれでも割り切れないので、素数でなければならない。しかし、これは p1, …, pn が素数の全てであるという仮定に反する。よって、仮定が誤りであり、素数は無数に存在する。 これは、背理法による証明だと思うのですが、、、、 お手数ですが、よろしくお願いします。

  • 双子素数の無限性について

    以下のような証明を作ってみました。 この問題が数学史上未解決の難問であることは知っているので、必ず どこかが間違っているのでしょうが、自分で作っておいてなんですけど、 どこが間違っているのかすら理解できませんでした。(馬鹿) 誰かどこかが間違っているか、なるべくわかりやすく指摘してもらえない でしょうか? 証明 ある3*10^n乗という数について考える。 双子素数は有限で、この素数以降には双子素数は存在しないものと 仮定する。 数直線上の3*10^n乗の点を0とすると、これ以降の素数の出現は、 +1,+7,+11,+13,+17……のように今までの素数と、1を足した場所で、 素数となる可能性のある点が出現する。 これのうち双子素数となる可能性のある点は、全てどちらかがそれ以 前に登場した2,3,5を除く二つ以上の素数の積でなければならない。 どちらも素数であるとすると、双子素数が存在しないという前提に反する からである。 双子素数のうち一つにつき、その点が何らかの素数の積であるために は、それぞれ異なる素数が二つずつ必要になる。 また、これは3*10^n乗以前に存在した素数でなければならず、2,3,5の 倍数でもない。 そして、一つとして同じ素数を使ったペアは存在しない。 例えば、 3*10^n乗+11がa*bという素数の積であったとき、 3*10^n乗+17がaの積もしくはbの積であることは絶対にない。 こうして6*10^n乗未満の範囲で、3*10^n乗の一つ以前まで全ての素数 を足していくと、双子素数の点を否定するために使う素数は、 あらわれるかもしれない双子素数の総数*2となる。 ではここで双子素数の点を否定するために使える素数の組み合わせに ついて考えてみる。 (1) まず、この範囲内のいずれか一点を否定するには、6*10^n乗までの数に 収まる必要がある。 それよりも一つ上の素数と組み合わせると6*10^n乗を上回ってしまう限界 値をpとする。 この上に存在する素数は全て、このpの範囲内の数との組み合わせでしか 6*10^n乗までの範囲内の素数の積になることはできない。 つまり、この限界値pまでの素数の2倍以上の組み合わせはありえない。 (実際に最小と最大同士を組み合わせていくと一定以上に大きい数にしか ならないので、組み合わせることのできる組数は必ずこれより小さくなる) 母数を2倍した場合、pの1,6倍付近が次の限界値p2となり、やはりそこ までの素数の数*2が組み合わせの最大値である。 (2) いかなる素数を組み合わせても6*10^n乗を上回ってしまう組み合わせ しかなくなり、それがまだ双子素数としてあらわれる可能性のある点の 総数を超えていなければ、必ず双子素数の数は増加する。 言い換えると、 限界値pまでの素数の個数<双子素数としてあらわれる可能性のある点の総数 であると、双子素数は必ず増加する。 (3) これが3*10^n乗で、 限界値pxまでの素数の個数>双子素数としてあらわれる可能性のある点の総数 であった場合、双子素数は増加するとも、増加しないともいえない。 双子素数が有限であることを前提にすると、3*10^n乗以降の双子素数として あらわれる可能性のある点は、全てどちらか一方が素数でないことは確かで ある。 では6*10^n乗以降の場合はどうか? 3*10^n乗の範囲で、a*bで否定された素数を2倍すれば絶対に偶数、つまり 2の倍数になる。 つまり、次の範囲では絶対に同じ組み合わせを使うことができないので、増え た限界値px2の範囲内で、新たに異なる組み合わせを見つけてくる必要がある。 ・11*7 11*89のように一方が同じ組み合わせは使える可能性はある。 そして、同じように、 12*10^n乗 24*10^n乗 と無限に繰り返す。 母数を2倍しても限界値px2までの素数の個数は当然に増加しない。 px2はpの1,6倍程度の位置に存在するからである。 (n<2nの間にならば、最低でも1の素数が含まれているが、この場合組み合わせ として使える素数が増えることも確実ではない) 途中で登場した組み合わせは全て2の倍数になっていくので、同じ組み合わせは 二度と使えない。 従って使える組み合わせは、必ず一定数減り続ける。 そのため、これを無限に繰り返せば、いつか限界値pxまでの素数の組み合わせ では絶対に否定できない点があらわれるはずである。 そこは必ず双子素数となる。 以上により、3*10^n乗以降でも、双子素数は必ず増加する。 これは双子素数が有限であるという前提と矛盾する。 よって、双子素数は無限である。

  • 素数 反例

    素数が無限であることの証明について。 http://homepage2.nifty.com/mathfin/hairihou/hairihou03.htm 素数が無限個でないことがある。すなわち,素数が有限個であることがあると仮定し、                                           (反例の存在を仮定)  その個数をn個とする。すべての素数を小さい方から順に          P1,P2,P3 ,・・・・・・,Pn      とおける。ここで,           P = P1×P2×P3×・・・・・・×Pn + 1    により,自然数Pをつくると,    Pは, P1,P2,P3 ,・・・・・・,Pn のいずれで割っても1余る。      よって,Pは1と自分自身以外に約数を持たないから素数である。    これはPnよりも大きい素数が存在することを意味しており,矛盾が生ずる。    よって,素数が有限個であることはない(反例は存在しない)     ゆえに,素数は無限に存在する --------------------------------------------- P=2 × 3 × 5 × 7 × 11 × 13 + 1 = 59 × 509 という反例がありますが、 上記の証明は間違いということですか?

  • 起動可能なプロセス数について

    こんにちは。 だれか教えてください。 winndowsNT、2000で200個のプロセスを起動させたい のですが90個あまりで起動できなくなってしまいます。 winndowsNT、2000の最大起動可能プロセス数は いくつぐらいなのでしょうか? また、設定により個数を増やすことは可能なの でしょうか? なにか知っている人がいましたら教えてください。 お願いします。

  • 実数と自然数は同じ個数なのではないでしょうか?

    すべての自然数とすべての実数を1対1で対応させる(すべての実数を一列に並べる)方法を考えました。間違いがあれば教えてください。 *方法1*「後出し」は実数の専売特許にあらず まず、すべての自然数と、異なる実数を無限に並べたもの、とを対応させるのだが、それは、異なる実数を無限に並べた「第一列」の「一番目」の実数を「1・1」とすると、 1→1・1 2→1・2 3→1・3 ・ ・ ・ と表すことができる。これはいわゆる「すべての自然数とすべての実数を1対1に対応させたと仮定したもの」であり、対角線論法によってこの表には存在しない実数を作れることから、仮定は間違い=「実数は自然数より多い」という結論になるのが従来の話である。しかしこれは、自然数を対応させる対象を「第一列」に限定したことによる間違った結論だ。 対角線上の数字のずらし方は、すべて一つずらす1111…の他に、1211…,1234…,2624…と無限にあるので、一つの対角線から、「第一列」には存在しない実数を無限に生み出すことができる。対角線論法によって生み出された無限の実数を並べた「第二列」に自然数を対応させることができなければ先の結論は正しいことになるが、そんなことは全然なく、「第二列」の「一番目」の実数を「2・1」とすると、 1→1・1 2→2・1 3→1・2 4→2・2 5→1・3 6→2・3 ・ ・ ・ のように、始めの、自然数と「第一列」の対応を解消した後、あらためて自然数を、「第一列」と「第二列」に、交互に対応させればいいだけの話なのだ。で、これは、「第一列」と「第二列」を合わせて「新たな第一列」にした(=始めの状態にリセットした)ということであり、この「新たな第一列=N1」の対角線から、対角線論法によって「新たな第二列=N2」が生まれるので、そしたらまたそれまでの対応を解消して 1→N1・1 2→N2・1 3→N1・2 4→N2・2 5→N1・3 6→N2・3 ・ ・ ・ と、自然数を「新たな第一列」と「新たな第二列」に交互に対応させ、これを無限に繰り返せばいいのである。自然数を、「新たな第二列」の実数に、無限に対応させ続けることができるということは、すなわち両者の個数は同じということなのである。 それにしても、無限に生み出される「新たな第一列」と「新たな第二列」は合わせて「新たな第一列」にできるのに、なぜ始めから一列に並べることができないのか。 方法1を別の言い方でまとめると、まず 1→1・1 2→1・2 3→1・3 ・ ・ ・ のように、すべての自然数と、異なる実数を無限に並べたもの、とを対応させるところから始めて、次に 1→1・1 2→  ←2・1 3→1・2 4→  ←2・2 5→1・3 6→  ←2・3 ・ ・ ・ と、「第二列」の実数を「第一列」に割り込ませて、始めの、すべての自然数と、異なる実数を無限に並べたもの、とを対応させた状態 1→1・1 2→2・1 3→1・2 4→2・2 5→1・3 6→2・3 ・ ・ ・ ↓ 1→1・1(1・1) 2→1・2(2・1) 3→1・3(1・2) 4→1・4(2・2) 5→1・5(1・3) 6→1・6(2・3) ・ ・ ・ にリセットして、そしたらまた 1→1・1 2→  ←2・1 3→1・2 4→  ←2・2 5→1・3 6→  ←2・3 ・ ・ ・ と、「第二列」の実数を「第一列」に割り込ませて…とこれを無限に繰り返す、といった具合に説明することができる。 *方法2*実数を整列させる 方法1は「動的な対応」とでも言うべきものであり、できれば「静的な対応」が望ましいわけで、そのためには実数を整列させる必要があるのだが、以下のようなやり方ではだめなのか。 まず 1→0.1 2→0.2 ・ ・ ・ 9→0.9 10→0.01 11→0.11 12→0.21 ・ ・ ・ 99→0.99 100→0.001 101→0.101 102→0.201 ・ ・ ・ 9999→0.9999 10000→0.00001 10001→0.10001 10002→0.20001 ・ ・ ・ …835218→0.812538… …835219→0.912538… …835220→0.022538… ・ ・ ・ というように、すべての自然数と、0と1の間のすべての実数を、1対1に対応させる。右側が「0と1の間のすべての実数」であることに異論はあるだろうか。この列に存在しない(0と1の間の)実数は存在するのか。この列は、小数第一位の数字が1,2…9,0,1…9,0,1…となっているので、だいたいその値で推移しながら、実数が、0と1の間を無限に埋めていく形になっている。 例えば、小数点以下、一恒河沙の一恒河沙乗番目が2、一阿僧祇の一阿僧祇乗番目が3、一那由他の一那由他乗番目が4の 0.1…2…3…4… のような無理数について、この並びの途中までのものしかないとしたら、ではどこまでのものならあるのか。0.1…2か、0.1…2…3か、0.1…2…3…4か。実際には「途中まで」などということはなく、つまりこの列にこの無理数は存在し、この任意の無理数が存在するなら(0と1の間の)すべての無理数が存在するのである。で、この表は左右が対称的になっているから、右に無限小数が存在するなら左には無限桁の自然数が存在するのである。 有限桁の自然数を重複することなく無限に並べることができないのと同様に、有限小数を、重複することなく無限に並べることはできない。この列は0と1の間の実数を整列させたものであり、この列に存在しない(0と1の間の)実数は存在しない。 で、すべての実数を整列させると 0,0.1,0.2…0.9,0.01,0.11,0.21… 1,1.1,1.2…1.9,1.01,1.11,1.21… 2,2.1,2.2…2.9,2.01,2.11,2.21… ・ ・ ・ (0),-0.1,-0.2…-0.9,-0.01,-0.11… -1,-1.1,-1.2…-1.9,-1.01,-1.11… -2,-2.1,-2.2…-2.9,-2.01,-2.11… ・ ・ ・ となるので、すべての自然数とすべての実数を1対1に対応させると、 1→0 2→0.1 3→-0.1 4→1 5→-1 6→2 7→-2 8→1.1 9→-1.1 10→0.2 11→-0.2 12→0.3 13→-0.3 14→1.2 15→-1.2 16→2.1 17→-2.1 18→3 19→-3 ・ ・ ・ のようになる。 ところでそれでも従来の考えが正しい場合、循環小数と非循環小数の個数に差が出る本質的な原因、両者の違いは何なのか。明確な違いは「整数比で表せるか表せられないか」だが、循環小数と非循環小数をそれぞれ循環数列と非循環数列に置き換え(今問題にしているのは個数であり、小数点を取り除いても個数は変わらない)れば整数比は関係なくなるわけだし。単なる数字の組み合わせに過ぎない同じ無限数列でありながら、循環させないというだけで個数が多くなるというのは何とも妙な話である。