定積分の結果に辿り着く方法

このQ&Aのポイント
  • 定積分の計算により、フーリエ級数のb_nの定数を求める方法について説明します。
  • 被積分関数を適切に書き直し、定積分を行うことでb_mの値を求めることができます。
  • 計算途中での誤りがあるかどうかを確認し、正しい形でb_mの式を導いてください。
回答を見る
  • ベストアンサー

定積分の結果に辿り着かせて下さい

定積分の結果に辿り着かせて下さい。 概要 f_p(t) = { sin^2 t (0<=t<π) = { 0 (π<=t<2π) のフーリエ級数の f_s(t) = c_0 + Σ[n=1,∞] a_n cos nt + Σ[n=1,∞] b_n sin nt のb_nの定数を求めようとしています。 (本からの抜粋) b_m = (1/π) ∫[0,π] (sin t)^2 * sin mt dt (m = 1,2,3,...) の被積分関数は (sin t)^2 * sin mt = (1/2) sin mt - (1/4) {sin (2+m)t - sin (2-m)t} と書き直せるので、定積分することにより { b_m = 0 (mが偶数のとき) { b_m = - 4 / (πm(m^2 - 4)) (mが奇数のとき) が得られる。 …とありますが、計算間違いをしているのか、後一歩で辿り着けません。 私の計算 (1/2) ∫[0,π] sin mt dt - (1/4) {∫[0,π] sin (2+m)t dt - ∫[0,π] sin (2-m)t dt} =(1/2) [(1/m) (-cos mt)][0,π] - (1/4) { [(1/(2+m)) (-cos (2+m)t)][0,π] - (1/(2-m)) (-cos (2-m)t)][0,π] } =(-1/2m) [cos mt][0,π] - (1/4) { (-1/(2+m)) [cos (2+m)t][0,π] + (1/(2-m)) [cos (2-m)t][0,π] } =(-1/2m) [cos πm - cos 0] - (1/4) { (-1/(2+m)) [cos (2π+πm) - cos 0] + (1/(2-m)) [cos (2π-πm) - cos 0] } =(-1/2m) [cos πm - cos 0] - (1/4) { (-1/(2+m)) [cos πm - cos 0] + (1/(2-m)) [cos πm - cos 0] } =(-1/2m) [(-1)^(2m-1) - 1] - (1/4) { (-1/(2+m)) [(-1)^(2m-1) - 1] + (1/(2-m)) [(-1)^(2m-1) - 1] } =[ (-1/2m) - (1/4) { (-1/(2+m)) + (1/(2-m)) } ] * [(-1)^(2m-1) - 1] =[ (-1/2m) - (1/4) { (1/(2-m)) - (1/(2+m)) } ] * [(-1)^(2m-1) - 1] =[ (-1/2m) - (1/4) { (2+m)/{(2-m)(2+m)} - (2-m)/{(2-m)(2+m)} } ] * [(-1)^(2m-1) - 1] =[ (-1/2m) - (1/4) { (2+m-2+m)/(2-m)(2+m) } ] * [(-1)^(2m-1) - 1] =[ (-1/2m) - (1/4) { (2m)/(4-m^2) } ] * [(-1)^(2m-1) - 1] …とりあえず、ここまで合っていますでしょうか? 合っていたら、 { b_m = 0 (mが偶数のとき) { b_m = - 4 / (πm(m^2 - 4)) (mが奇数のとき) まで導いて下さい。 途中で計算間違いがあったらご指摘下さい。 お願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • f272
  • ベストアンサー率46% (8026/17154)
回答No.1

cos πm=(-1)^(m-1) でmが奇数なら-1でmが偶数なら1だよ。 あとは (-1/2m) - (1/4) { (2m)/(4-m^2) } を計算すればよい。 = 2/(m(m^2-4)) になる。

futureworld
質問者

お礼

ベストアンサーを差し上げます。 なるほど、cos πm=(-1)^mでしたね。 私のでは乗数がすべて奇数になるので、常に-1になるところでした。 (-1/2m) - (1/4) { (2m)/(4-m^2) } まで合っていてよかったです。 それ以降も自力で出せました。 奇数のときに[(-1)^m - 1]が-2になるので = 2/(m(m^2-4)) で辻褄が合うんですね。 ありがとうございました。

関連するQ&A

  • |t| フーリエ級数展開

    1/π∫(-π→0)(-t)*sin(nt)dtを計算したところ、1/n*cos(nπ) 1/π∫(0→π)(t)*sin(nt)dtを計算したところ、 -1/n*cos(nπ)になり、f(t)にまとめることができません。 計算結果は、1/π∫(-π→0)(-t)*cos(nt)dtと1/π∫(0→π)(t)*cos(nt)dtのように、一致すると思うのですが、 1/π∫(-π→0)(-t)*sin(nt)dtと、1/π∫(0→π)(t)*sin(nt)dtの計算過程を教えてください。 どなたかお願いします。

  • 方形波 フーリエ級数展開

    t=2のときー1,t=1のとき1を取る方形波電圧をフーリエ級数で展開するという問題なのですが, その時の関数g(t)が奇関数なので, g(t)=Σ(n=1→∞)an sin(nwt) …(1) と置くと, an=2/T ∫(0→T) g(t) sin(nwt)dtより, 周期T=2の時 an=2/2 ∫(0→2) g(t) sin(nπt)dt =∫(0→1) g(t) sin(nπt)dt + ∫(1→2) g(t) sin(nπt)dt =∫(0→1) 1× sin(nπt)dt + ∫(1→2) (-1)× sin(nπt)dt =[-cos(nπt)/nπ](0→1) - [-cos(nπt)/nπ](1→2) =-cos(nπ)/nπ - (-1/nπ) -{-cos2nπ/nπ - (-cosnπ/nπ)} =2(-cosnπ/nπ) + 1/nπ + cos2nπ/nπ …(2) n=1の場合(または奇数)   (2)=4/π n≠1の場合(または偶数)   (2)=0 よって(1)より, g(t)=Σ(n=1→∞) 4/π sin(nwt) =4/π Σ(n=1→∞) sin(nwt) という風に計算をしたのですが、フーリエ級数はこういう形になりませんよね。積分とフーリエが苦手なものでつっかえながらいろいろな参考書をあさって見たのですが,理解できずにいます。 分かりづらい説明なのですが,改善点等ありましたら,ご指摘頂ければ幸いです。

  • 積分について

    ∫{sin(√(2)t)*sin(nt)}dt (nは自然数) この積分の解き方分かりませんか?

  • 積分すると1/2とLが消える?

    本の計算では、ある式を積分すると1/2とLが消えてしまっていて、自分の計算と合いません。右辺が0なので両辺に2を掛けてLで割った可能性もあるのですが、1/2が消えるのはまだ許せても、Lが消えるのは納得いきません。(消していいものなのか、もしくは別の理由で消えたのか、判断願います。) 原文を引用します: ※関係式: ∫[0,L] cos (2nπx/L) dx = ∫[0,L] sin (2nπx/L) dx = 0 (式1.17a) (nは正あるいは負の整数) [前略] …さらに、 (1/2) * { da[0](t) }/dt + Σ[n=1,∞] { da[n](t) }/dt * cos(2nπx/L) + Σ[n=1,∞] { db[n](t) }/dt * sin(2nπx/L) = -D * Σ[n=1,∞] {(2nπ/L)^2} * a[n](t) * cos(2nπx/L) - D * Σ[n=1,∞] {(2nπ/L)^2} * b[n](t) * sin(2nπx/L) (式7.6) …の両辺をそのままx=0からx=Lまで積分すると、先の関係式(式1.17a)より、 { da[0](t) }/dt = 0 (式7.7c) が得られる。 ・・・以上、引用終わり。 私の計算だと、(式7.6)の両辺をそのままx=0からx=Lまで積分するので: (1/2) * { da[0](t) }/dt *∫[0,L] 1 dx + Σ[n=1,∞] { da[n](t) }/dt * ∫[0,L] cos(2nπx/L) dx + Σ[n=1,∞] { db[n](t) }/dt * ∫[0,L] sin(2nπx/L) dx = -D * Σ[n=1,∞] {(2nπ/L)^2} * a[n](t) * ∫[0,L] cos(2nπx/L) dx - D * Σ[n=1,∞] {(2nπ/L)^2} * b[n](t) * ∫[0,L] sin(2nπx/L) dx になり、 ∫[0,L] cos (2nπx/L) dx = ∫[0,L] sin (2nπx/L) dx = 0 (式1.17a) により、 ∫[0,L] cos(2nπx/L) dx ∫[0,L] sin(2nπx/L) dx はすべて0になります。 残りを計算すると (1/2) * { da[0](t) }/dt *∫[0,L] 1 dx = 0 (1/2) * { da[0](t) }/dt * [x][0,L] = 0 (1/2) * { da[0](t) }/dt * [L-0] = 0 (1/2) * { da[0](t) }/dt * L = 0 になります。本の答えは { da[0](t) }/dt = 0 なので合いません。 [概略](原文が凄まじく長いので、自分の言葉で書きました…なんとなく分かっていただけたらと思います…足りなかったら補足します) u(x,t) が時刻tにおける座標xでの温度uを表します。 このとき、1次元の熱伝導方程式 { δu(x,t) }/δt = D * { δ^(2) * u(x,t) }/{ δx^(2) } (式7.1) を解くためにフーリエ級数をどう使うのか、というのが今回のテーマです。 最初の時刻(t=0)での温度分布(つまり、初期条件)は u(x,0) = f(x) (式7.2) とします。 例として、長さLの「リング状の」棒での熱伝導を考えます。リング状なので、棒に沿って「ある点」をx=0とすると、 x=x[0] と x=x[0]+L は同じ点に対応するため、「温度uが座標xについて周期Lの周期関数である」という周期的境界条件 u(x,t) = u(x+L,t)(式7.3) が任意の時刻t (>=0)で成り立っている必要があります。 このときには初期温度分布f(x)にも条件が付き、 f(x) = f(x+L)(式7.4) が成り立っていないといけません。すなわち、f(x)も周期Lの周期関数です。 u(x,t)をフーリエ級数展開すると、 u(x,t) = (1/2) * a[0](t) + Σ[n=1,∞] a[n](t) cos (2nπx/L) + Σ[n=1,∞] b[n](t) sin (2nπx/L)(式7.5) になり、この(式7.5)を(式7.1)に代入して項別の偏微分をすると、私の質問に出てくる (1/2) * { da[0](t) }/dt + Σ[n=1,∞] { da[n](t) }/dt * cos(2nπx/L) + Σ[n=1,∞] { db[n](t) }/dt * sin(2nπx/L) = -D * Σ[n=1,∞] {(2nπ/L)^2} * a[n](t) * cos(2nπx/L) - D * Σ[n=1,∞] {(2nπ/L)^2} * b[n](t) * sin(2nπx/L) (式7.6) になります。

  • 積分計算

    以下の積分計算、間違っているのですが、どこで間違っているのかご指摘お願いいたします。 ∫{(sin x)^3・cos x }dx cos x = t とおくと、 -sin x ・ dx = dt よって、与式は ∫-(sin x)^2 ・ t ・ dt = ∫ (t^2 - 1)t・dt = 1/4 (t^4 - 2t^2) = 1/4 (cos x)^2 {(cos x)^2 -2}

  • フーリエ係数

    画像のような波形信号のフーリエ係数を求めるときは [0-π]の範囲ではf(t)=4sin(t)で、[π-2π]の範囲ではf(t)=0として計算すればよいのでしょうか? そうすると計算式は積分範囲は[0-π]で a0=(1/π)*∫4sin(t)dt, an=(1/π)*∫4sin(t)*cos(nt)dt, bn=(1/π)*∫4sin(t)*sin(nt)dt, となるのでしょうか? また、周期2πで、[-π,π]において、f(t)=π-|t|、で表わされる関数f(t)のフーリエ係数は a0=π, an=(2/n)*(cos(nπ)-sin(nπ)), bn=0, になったのですが(計算があってるかはわかりません) フーリエ級数を求めるには、この後どうすればいいのでしょうか? よろしくお願いします。

  • フーリエ級数展開の問題の解き方

    区間[0,2π]での(sin(t/2))^2をフーリエ級数展開求めろという問題なんですが, a_0=(1/π)*∫[0,2π] (sin(t/2))^2 dt =(1/ 2*π)*∫[0,2π] (1-cos(t)) dt =1 なのはあってると思うんですが, a_n=(1/π)*∫[0,2π] ((sin(t/2))^2) * cos(nt) dt と b_n=(1/π)*∫[0,2π] ((sin(t/2))^2) * sin(nt) dt を解くとどっちも0になってしまいます。 解答ではフーリエ級数展開したのは,(1/2) - (1/2)*cos(t)となっているんですが -(1/2)*cos(t)はどこからでてきたのでしょうか? よろしくおねがいします。

  • フーリエ級数の求め方。

    フーリエ級数展開の問題で [-π,π]の区間で|sin(t)|をフーリエ級数展開せよ。という問題です。 公式に当てはめて a_0 = (1/π)*∫[-π,π] |sin(t)| dtとなって、まずこれを =(2/π)*∫[0,π] sin(t) dtと直せますか? 絶対値がついているのでsin(t)は、π周期になってるのでこう直せると思ったんですが。 次にa_nを求めるのに a_n=(1/π) * ∫[-π,π] (|sin(t)| * cos(nt)) dt これも =(2/π)*∫[0,π] sin(t) * cos(nt) dtとしてしまって問題ないですか? あとこの積分は 部分積分や三角関数の積和の公式を使って解けばいいのでしょうか? フーリエ級数について勉強を始めたばかりで自信がなくて細かいことを聞いてしまって 申し訳ありませんがよろしくお願いします。

  • 数III 定積分

    In=∫[0→π/2] sin^n xdx, Jn=∫[0→π/2] cos^n xdx  (n=0,1,2…)とする。 In=Jnを示せ。 cosx=sin(π/2-x) だから、 π/2-x=t、 dx=dt x:0→π/2 t:π/2→0 定積分の値は積分定数の取り方によらない。つまり、 Jn=∫[π/2→0] sin^n tdt = ∫[π/2→0] sin^n xdx=In これで合ってますか?

  • フーリエ級数を求める課題で…

    はじめまして。フーリエ級数を求める課題でつまづいてしまったので、解き方が判る方がいらっしゃればお願いいたします。 途中まで解いてみたものも併記しますので、間違いがあるようでしたら指摘頂ければ幸いです。 問.以下に示す周期2の関数f(t)のフーリエ級数を求めよ。 f(t)=|sin(πt)| (-1<t<=1) 絶対値を外して考えると  f(t)= {-sin t (-π<t<=0) sin t (0<t<=π)} これをフーリエ変換の基本式  f(t) = a0 + Σ(n=1→∞){an×cos(2πnt/T) + bn×sin(2πnt/T)} に対応させると  a0=0  cos(nt)=0 より  f(t) = Σ(n=1→∞){bn×sin(2πnt/T)}     =2/T × ∫(-T/2→T/2){f(t)×sin(2πnt/T)}dt     =1/π × ∫(-π→π){f(t)×sin(nt)}dt     =1/π × ∫(-π→0){(-sint)×sin(nt)}dt × ∫(0→π){sint×sin(nt)}dt ここまで展開してみたのですが、この積分が解けずにつまずいています。 どなたかお願いいたします。