• 締切済み

偏微分方程式論

式変形の質問なのですが、画像の(1.7)の不等式のひとつ上の不等式、|T(∂u/∂x)(∂u/∂t)|≦~は何故成り立つのですか? わからないので教えてください uはC^2級関数です

みんなの回答

  • tmpname
  • ベストアンサー率67% (195/287)
回答No.2

Tが何かぜんぜん分かりませんが、きっと正の何かと思うと単なる相加相乗の関係ですね。

全文を見る
すると、全ての回答が全文表示されます。
  • bran111
  • ベストアンサー率49% (512/1037)
回答No.1

多分材料力学の応力場の解析かなんかの部分でしょうがu(変位場?),m,T,ρ等について確認して句f¥ダサい。本によって、著者によって記号に使い方が違います。

glutamine
質問者

補足

mは1/mや-1/mの傾きに、Tは弦の張力、ρは弦の密度、u(t,x)は時刻tにおける弦の各点の静止状態からの変位 です

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 微分方程式論について

    微分方程式論について (1) 関数族{f_n|n=2,3,...} f_n:[0,1]→R f_n=(n^2)x (0≦x≦1/n) f_n=-(n^2)x+2n (1/n≦x≦2/n) f_n=0 (2/n≦x≦1) このとき、{f_n}はいかなる関数にも一様収束しないことをε論法で示せ (2) f:R×R≧0→R f(x,y)=√yと初期値問題 dy/dx=f(x,y) y(0)=0・・・(*)について (1)f(x,y)はyに関して局所リプシッツ連続ではないことをε論法で示せ (2)定数c≧0に対して、関数 y_c:R→R≧0 y_c(x)=0 (x≦c) y_c(x)=1/4(x-c)^2 (x>c) は(*)の解であることを示せ (3) Gronwallの不等式{f,g,uは区間I上の連続関数でg(x)≧0とする} u(x)≦f(x)+∫_(x_0→x)g(t)u(t)dt (x>x_0) ⇒ u(x)≦f(x)+∫_(x_0→x)g(t)u(t)exp{∫_(t→x)g(s)ds}dt (x>x_0) を示せ。また、f(x)が非減少関数 ⇒ u(x)≦f(x)exp{∫_(x_0→x)g(t)dt} (x>x_0) を示せ (4) 初期値問題 dy/dx=y y(0)=a についてPicardの逐次近似法により、解を具体的に構成せよ ただし、y(x)の定義域については考えなくてよい これらの解法を教えてください! わからなくて困っています…

  • 微分方程式の解について

    すべての点で微分可能な関数u(x)が次の条件を満たしている。   u(x)=u(-x)+2x …(1) かつ u(x)u'(x)+u(-x)u'(-x)=6x^2+2 …(2) このとき、関数u(x)を求めよ。 という問題に次のように解答したのですが、答えに自信がありません。合っているのでしょうか。 [解答1] (2)より [{u(x)}^2]'+[{u(-x)}^2]'=12x^2+4 {u(x)}^2+{u(-x)}^2=4x^3+4x+C (1)より、u(-x)=u(x)-2x、これを上の式に代入して {u(x)}^2+{u(x)-2x}^2=4x^3+4x+C 2{u(x)}^2-4xu(x)-4x^3+4x^2-4x+D=0 {u(x)}^2-2xu(x)-2x^3+2x^2-2x+E=0 u(x)=x±√(2x^3-x^2+2x+E) [解答2] (1)より、u(-x)=u(x)-2x、これと(2)式より u(du/dx)+(u-2x){(du/dx)-2}=6x^2+2 2(u-x)(du/dx)-2u+4x=6x^2+2 (u-x)(du/dx)-u+2x=3x^2+1 u-x=tとおくと (du/dx)-1=(dt/dx)より、(du/dx)=1+(dt/dx) t{1+(dt/dx)}-t=3x^2-x+1 t(dt/dx)=3x^2-x+1 tdt=(3x^2-x+1)dx (1/2)t^2=x^3-(1/2)x^2+x+C t^2=2x^3-x^2+2x+D u-x=±√(2x^3-x^2+2x+D) u(x)=x±√(2x^3-x^2+2x+D)

  • 微分方程式について

    微分方程式について。 yやdy/dxの形ならば解けるのですが ちょっと変わった形になると解けずに困っております。 回答お願いします。 1 未知関数x(t),y(t)に関する微分方程式 x´(t)=y(t), y´(t)=-x(t)を 初期条件x(0)=a, y(0)=bの下で解け。 2 x=x(t)を変数tのC^∞級関数とする。 このとき、 d^2x/dt^2 +(dx/dt)^2 -4=0 を解け。 3 tの関数x(t)が次の微分方程式を満たすとする x´+x^2+a(t)x+b(t)=0 ただしx´=dx/dtである。 ・x(t)=u´(t)/u(t)のとき、関数u(t)の満たす微分方程式を求めよ。 ・微分方程式 x´=x(1-x)の一般解を求めよ。 長いですが回答お願いします

  • 偏微分方程式

    閲覧ありがとうございます。 学校の課題で出された問題です。 【問題】 ∂^2U/∂x^2 = ∂^2U/∂t^2 を解け。(Uはx、tで定義されている関数です) なお、初期条件は ∂U(0,t)/∂x = ∂U(π,t)/∂x = 0 U(x,0) = 2+cosx ∂U(x,0)/∂t = x とする。 スキャナが使えない上、自分の字が汚い事で読みにくい事この上ないのですが、画像の通り一応解らしきものは求まりました。 【解】 U = 2+cosx*cost+Σ(Bn*cos(nx)*sin(nt)) (n : 0~∞) ただし n=0   → n*Bn = π/2 n=2m  → Bn = 0 n=2m-1→ Bn = -4/(π*n^3) (m:自然数) ここで、『n=0   → n*Bn = π/2』と、自分で書いたものの 実際にn=0を代入すると『0*B0 = π/2』となり、おかしいですよね? おかしいとしたらどこの計算が間違っているのかを指摘してほしいです。 根本的に間違っているようでしたら模範解答をいただけるとありがたいです。 長文失礼しました。

  • 偏微分方程式(その3)

    http://oshiete1.goo.ne.jp/kotaeru.php3?q=104706 http://oshiete1.goo.ne.jp/kotaeru.php3?q=106836 からの続きの第3問です。 『前問で求めたΦ(ξ)に対応する(*)式の解u(x, t)を求め、その特徴を簡単に述べよ。また、νの変化にともなう解u(x,t)の変化を説明せよ。』 まずu(x, t)ですが、 u = (∂Ψ/∂x) = (∂/∂x)(-2νlogφ) = -2ν(1/φ)(∂φ/∂x) = -2ν(1/Φ)Φ'(∂ξ/∂x) = -2ν[-(c/2ν) e^{-(c/ν)ξ}] / [(1/2){e^{-(c/ν)ξ} + 1}] = 2c / [1 + e^{(c/ν)(x-ct)}] と求められた(合ってるかどうかは別)のですが、これの特徴をいえと言われても…。 νが変化するとuのx-ctに対する鋭敏さが変わってくるとかそういう事なのかなー?? それじゃ答えになっていない気がしますし。 よく分かりません。よろしくお願いします。

  • 微分方程式

    微分可能な関数f(x)が, ∫[0~x]f(t)dt=x^3-3x^2+x+∫[0~x]tf(x-t)dt をみたしている. このとき, f(x)を求めよ. 与式の左辺をF(x), 右辺をG(x)とおくと, F(x)=G(x) ⇔ F'(x)=G'(x) かつ F(a)=G(a)となるような定数aが存在するー(※) F(0)=G(0)=0より, (※) ⇔ F'(x)=G'(x) h'(x)=f(x), g"(x)=f(x)とすると ∫[0~x]tf(x-t)dt=[-tf(x-t)][0~x]+∫[0~x]F(x-t)dt=-xF(0)-g(0)+g(x) より,与式の両辺をxで微分すると, f(x)=3x^2-6x+1+F(x)-F(0)=3x^2-6x+1+∫[0~x]f(t)dtー(1) 再びxで微分して, f'(x)=6x-6+f(x) f(x)=yとおくと, dy/dx=6x-6+y 6x+y=uとおくと, dy/dx=du/dx-6より, du/dx=u u≠0のとき,  du/u=dx ⇔∫du/u=∫dx ⇔log|u|=x+c (c:積分定数) ⇔u=±e^(x+c) ⇔y=±e^(x+c)-6x (1)にx=0を代入して,f(0)=1 ⇔ ±e^c=1 ⇔ c=0 ∴y=±e^x-6x また, u=0のとき, y=-6xより,(1)に代入すると, -6x=3x^2-6x+1-3x^2 ⇔ 0=1となり, いかなるxについてもこれは成り立たず不適. ∴f(x)=±e^x-6x 添削お願いします.

  • 偏微分方程式の解き方を教えていただけないでしょうか

    偏微分方程式の解き方を教えていただけないでしょうか。 u_t (tの一階微分) = u_xx (xの二階微分) x∈[0,1]のとき、 境界条件 u_x(0,t)=0 、u(1,t)=5t (↑xの一階微分) 初期条件が、 u(x,0)=0 自分で _____________________ du/dt = d^u/dx^2 x∈[0,1] du/dx(0,t)=0 、u(1,t)=5t u(x,0)=0 のとき、変数を分離して、 u=(X,Y) X''=-λXとしました。 X=c1 cos(√(λ) x) +c2 sin(√(λ) x) として、 X’=√(λ) *(ーc1 sin(√(λ) x) +c2 cos(√(λ) x) ) 境界条件をいれると、 X’(0)=√(λ) *(ーc1 sin(√(λ) 0) +c2 cos(√(λ) 0) ) より c2=0 X(1)=c1 cos(√(λ)*1) +c2 sin(√(λ)*1) =5t c1*cos(√(λ)*1) =5t ____________________________ と計算をしてみたのですが、5tの扱い方がわからず、躓いてしまいました。 どのように計算をすればよいか、教えていただけないでしょうか。

  • 微分方程式、初期値で微分すると?

    u=u(x,y), v=v(x,y)は(x,y)∈R^2のC^1級関数とし、 (ξ、η)∈R^2を初期値とする初期値問題        dx/dt=u(x,y), x(0)=ξ        dy/dt=v(x,y), y(0)=η の解を x=x(t;ξ,η), y=y(t;ξ,η) とする。 ∂x/∂ξ|[t=0]=1、 ∂/∂t(∂x/∂ξ)|[t=0]=∂u/∂x(ξ,η) を示せ。 って問題なんですけど、初期値(ξ)で偏微分?何のことか全然わかりません。xにt=0代入してからξで微分すれば1にはなりますけどそんなことしたらだめですよね? 助けてください。

  • 無限領域での波動方程式の計算に出てくる偏微分方程式

    波動方程式の計算に出てくる、偏微分方程式の解の計算方法が分かりません。 本から引用します: ここで、弦を伝わる波の問題などで使われる波動方程式 { (∂^2) u(x,t) } / (∂t^2) - c^2 * { (∂^2) u(x,t) } / (∂x^2) = 0 (式7.33) を考えてみよう。ここで、u(x,t)は座標xの位置での時刻tにおける弦の変位を表わし、cは正の定数とする。そして、∞に長い弦を考え(すなわち、-∞<x<∞の範囲で考え)、境界条件は、すべての t>=0 に対して u(x,t)→0 (式7.34) (x→±∞) を満たすとする。つまり、無限遠では波が存在しないとする。更に初期条件は u(x,0) = f(x) { ∂u(x,t) } / ∂t |t=0 = 0 (式7.35) とし、ここでf(x)は x→±∞ で0に近付く絶対可積分な関数であるとする。また、上式の縦棒(|)の後のt=0は、「t=0での偏微分の値」という意味である。(式7.35)のように初期条件として2つの式を与えるのは、(式7.33)がtについて2階の微分方程式だからである。今の場合、xの無限領域での関数u(x,t)を取り扱うので、フーリエ変換を使った解法を用いればよい。 例題 初期条件(式7.35)と境界条件(式7.34)を満たす(式7.33)の解を求めよ。 [解] u(x,t)のxについてのフーリエ変換を F(k,t) = ∫[-∞,∞] u(x,t) e^(-ikx) dx (式7.36) と表す。(式7.33)にe^(-ikx)を掛け、xについて-∞から∞まで積分すると、熱伝導方程式(式7.20)を導いたときと同様な考え方から、 { (∂^2)F(k,t) } / (∂t^2) + (c^2) * (k^2) * F(k,t) = 0 (式7.37) ←質問箇所 を得る。この微分方程式の解は、 F(k,t) = C[1](k) e^(ickt) + C[2](k) e^(-ickt) (式7.38) ←これをどう導いたのかが不明 であることが、代入すれば確かめられる。ここで、C[1](k)、C[2](k)は任意のkの関数で ある。 ・・・以上、引用終わり。 私は偏微分方程式自体、変数分離とかいう方法でサラッとやっただけで、上記の方法は見たことがありません。ネットで検索しましたが、同様の式を見つけることが出来ませんでした。そんな私が敢えて解こうとすると: { (∂^2)F(k,t) } / (∂t^2) + (c^2) * (k^2) * F(k,t) = 0 第2項を右辺に移項する { (∂^2)F(k,t) } / (∂t^2) = - (c^2) * (k^2) * F(k,t) 左辺の(∂t^2)と右辺のF(k,t)を交換する { (∂^2)F(k,t) } / F(k,t) = - (c^2) * (k^2) * (∂t^2) 両辺をtで積分する(もう既に未知の領域…きっと2乗が減って1乗になるのでしょう…) ln{F(k,t)} * {∂F(k,t)} / F(k,t) = - (c^2) * (k^2) * ∫(1)(∂t^2) ln{F(k,t)} * {∂F(k,t)} / F(k,t) = - (c^2) * (k^2) * t (∂t) + C[1](k) もう一度両辺をtで積分するだろう雰囲気を漂わせたところでやめておきます。 もしかしたらln{F(k,t)}を積分しなければならないのでは、と思ったら思考が停止しました。多分、既に間違っているのでしょう。 …ということで、この偏微分方程式の解き方を教えて下さい。お願いします。

  • 偏微分方程式が解けません。

    f(S,t) = S・N(u/(σ√x ) +σ√x ) - X・e-γx・N(u/(σ√x ) )       u = log(S/X) + (γ-σ2/2)(T-t) この式をσ=に直していただけませんか? σを求めたいです。

このQ&Aのポイント
  • 中学2年女子の私が好きな男子との関係について、意外な展開がありました。彼が急病で入院し、入院中も私に連絡をくれましたが、退院後の彼の態度に驚かされました。
  • 私は同じクラスの男子が好きで、一度一緒に遊びに行ったこともあります。しかし、彼が急病で入院しました。入院中も彼から連絡がありましたが、退院後、彼の態度が変わってしまいました。
  • 中学2年女子の私が好きな男子が急病で入院し、その間も私に連絡をくれました。しかし、退院後の彼の態度が違ってしまい、驚いています。私たちの関係について、彼はどのように思っているのでしょうか?
回答を見る