• 締切済み
  • 困ってます

量子力学、教えてください(はぁと)

円周上の粒子の波動関数の求め方教えてクレメンス。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数144
  • ありがとう数0

みんなの回答

  • 回答No.1

シュレディンガー方程式で求めるんやでー http://www.op.titech.ac.jp/lab/Take-Ishi/html/ki/hg/chem01/0614/bnote0614.html

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 量子力学の問題です。

    量子力学の問題です。 体積Vの領域内に閉じ込められた粒子の波動関数がAe^((i/h)p・r)で与えられている時、規格化条件からAの値を求めよ。 (波動関数の hはエイチバー  pとrは両方ともにベクトルです。入力の仕方が分からなくて上記のとおりに書いてしまいました。。。) 自分は物理を専攻している大学3年生です。そのレベルで分かるようにご説明していただけると幸いです。

  • 量子力学について

    束縛状態で波動関数の2乗したものを積分したら1になるように規格化するというのは波動関数の2乗を確率密度とするためだと思うのですが散乱状態で波動関数をデルタ関数で規格化するというのがよくわかりません。回答よろしくお願いします。

  • 量子力学の問題です

    壁に手をあててすり抜ける確率を求めよという問題なのですがどのようにすればよいでしょうか? 1、壁や手などの物理量は簡単なものに設定する。 2、手を構成する粒子の波束を考える。 3、それが壁のポテンシャルを通過する波動関数を求める といったイメージで解こうと思ってるんですがうまくいかないです誰か教えてください。 お願いします。

  • 量子力学について

    波動関数を規格化するとはどういう事なのでしょうか? 回答よろしくお願いします。

  • 量子力学について

    http://www.metro-u.ac.jp/~suzukitr/qma3.pdf#search='階段ポテンシャル'の46ページの井戸型ポテンシャルで0<Eのとき、領域IIIの波動関数が左から粒子が入射しているのになぜ exp(-ikx) の項があるのでしょうか? 回答よろしくお願いします。

  • 量子力学の問題(時間依存の方程式)

    量子力学で以下のような問題を解きたいです。 「1次元空間内で質量mの粒子がポテンシャルV=0で自由に運動している。 時刻t1で粒子の位置はx1であった。時刻t2(>t1)で粒子の波動関数を求め、粒子がt2でx2に存在する確率を計算せよ。」 自分で考えてはみたのですが正しいのか全く見当違いなのかもわかりません。 自分の考え方が正しいかどうか、また間違ってるのであればどのように考えて解けばいいのか教えてください。 ↓自分の考え↓ まず自由粒子についての時間依存なしのシュレディンガー方程式を立てて、 波動関数ψ=Ae^(ikx)+Be^(-ikx)を求める。 その波動関数に時間に依存する項e^(-iEt/h)をあとでつける。 そして、得られた解にx=x1,t=t1を代入して波動関数の確率分布を求める。 確率分布は実際に観測されているので|ψ|^2=1となる。 ここから A^2+B^2+2ABcos(2kx1)=1 が求められる。 次にt=t2,x=x2についても同様に、|ψ|^2を求めると、 |ψ|^2=A^2+B^2+2ABcos(2kx2)となり、 t=ta,x=x1のときの結果を利用して、 |ψ|^2=1-2AB{cos(2kx2)-cos(2kx1)} となり、定数A,Bが残ったままですが一応確率分布の式を求めました。 この考え方、解き方でいいのでしょうか? 教えてください。

  • 量子力学の規格化の問題

    0 < x < a の井戸型ポテンシャルの中の波動関数 ψ(x) = C(1-cos(4πx/a)) において、 1)この波動関数を規格化し、規格化因子Cを求めよ 2)規格化された波動関数をエネルギーの固有関数 φn(x)=√((2/a)sin(nπx/a)) を使ってψ=Σ[i=1,n]c(i)φ(i)と展開したときのc(i)を求めよ 3)E=E1,E2,E3が測定される確率を求めよ 1)は自力で解いてC=√(2/3a)はでたのですが、 2)以降の解き方が分かりません。どなたかよろしくお願いします。

  • 量子力学 問題

    下の図の波動関数の期待値xとその2乗を求めたいのですがわかりません。 具体的にわからないところはエルミート多項式の2乗です。

  • 量子力学 同種粒子について質問です。

    量子力学 同種粒子について質問です。 問題 1粒子のとる、異なる2つの軌道波動関数φa(r)とφb(r)が存在するとして、2個の同種粒子が、それぞれφaまたはφbの状態をとるときの2粒子波動関数を考える。フェルミオン2個の場合、ボソン2個の場合のそれぞれに対して、要請される対称性に言及し、可能な波動関数の形をすべて示せ。粒子1の位置をr1、粒子2の位置r2とせよ。各粒子のスピンについては、書くフェルミオンのスピンの大きさは1/2であり、粒子1の上向きスピン状態をα1、下向きスピン状態をβ1、粒子2についてはそれぞれα2,β2とせよ。各ボソンのスピンの大きさは0とせよ。波動関数の規格化はしなくてよい。 上の問題に関して、この問題は「フェルミオンは反対称」「ボソンは対称」ということだけで答えを導くことはできますか? 例えば2つの粒子が同じ軌道にあるときにフェルミオンの場合はパウリの原理より同じスピン状態になれませんよね?この事実を反対称ということから導出できますか? フェルミオンとボソンのに対する要請は反対称と対称ということだけだと理解しています。パウリの原理はそれから導かれる結果ですよね? できれば上の問題に対する解答を考え方とともに教えていただけないでしょうか?

  • 量子力学の問題

    -L/2<=x<=L/2 (L>0)における質量mの自由粒子の量子力学的運動を考える。 波動関数は周期的境界条件を満たすとする。 運動量の間隔dpの中にある運動量の固有状態の数はほぼいくらになるか? ただし、Lは十分大きく、したがってdp>>2π(h/(2πL))であるとする。 この問題が良くわかりません。Lが十分大きいのだから固有状態は連続スペクトルになると思うのですが、固有状態の数はどのようにもとめたら良いのでしょうか?どなたかよろしくお願いします。