• ベストアンサー
  • すぐに回答を!

量子力学について

束縛状態で波動関数の2乗したものを積分したら1になるように規格化するというのは波動関数の2乗を確率密度とするためだと思うのですが散乱状態で波動関数をデルタ関数で規格化するというのがよくわかりません。回答よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数1
  • 閲覧数135
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

例えば内積空間で基底を考える時には正規直交基底を選ぶ事が多いですが、これは単に計算が楽になったり分かりやすくなるからであって、正規直交基底を選ばなければならない理由がある訳ではありませんよね。 ご質問の規格化も話は一緒です。 連続固有値を持つような場合にデルタ関数を使って規格化する事は、 (正規直交でない)基底から正規直交基底を求めるような事に相当していて、 こうする事で後の計算が楽になる(場合がある)からこのように規格化する事が多いというだけの話です。 このように規格化しなければいけないという決まりはありませんし、貴方が期待しているであろう物理的な理由は何もありません。 ついでに言えば、束縛状態の方も同じ理由です。 「波動関数の絶対値の2乗が(絶対)確率密度になっている事」は正規直交基底を選ぶメリットの1つに過ぎないかと。そもそも「波動関数の絶対値の2乗が(絶対)確率密度になるように」という理解だと、波動関数が登場しない場合(スピン系など)にどう規格化すればいいのか分からなるので、あまり良くない理解のような気がします。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。

関連するQ&A

  • 量子力学について

    一次元の系を考え、-∞<x<∞にある電子の状態に対してポテンシャルのV(x)が、 V(x)={ +∞ (x≦0) , -V (0<x≦a) , 0 (a<x)} (V、a正の定数) であるとき、基底状態のエネルギー固有値と波動関数をもとめよ。(ただし、規格化定数は気にしなくてよく、-Vは十分深く、束縛状態は必ずできるものとする。) という問題で、エネルギー固有値を求めようとしたのですが、式が複雑でエネルギー固有値を求めら・れませんでした。どうにかして、基底状態のエネルギー固有値と波動関数だけを求める方法はないでしょうか? 回答よろしくお願いします。

  • 量子力学の問題です><

    いろんな問題を解いているところなのですが、無限と有限が混じった井戸型ポテンシャルの問題がよくわかりません… 次のポテンシャル V(x)= ∞(x<0)、0(0≦x≦a)、Vo(a<x) の束縛状態のエネルギー固有値を求めよ。また、基底状態の波動関数の概形を図示せよ。 という問題です。もしわかる方がいたら教えてください。 よろしくおねがいします><

  • 量子力学について

    波動関数を規格化するとはどういう事なのでしょうか? 回答よろしくお願いします。

  • 量子力学の規格化の問題

    0 < x < a の井戸型ポテンシャルの中の波動関数 ψ(x) = C(1-cos(4πx/a)) において、 1)この波動関数を規格化し、規格化因子Cを求めよ 2)規格化された波動関数をエネルギーの固有関数 φn(x)=√((2/a)sin(nπx/a)) を使ってψ=Σ[i=1,n]c(i)φ(i)と展開したときのc(i)を求めよ 3)E=E1,E2,E3が測定される確率を求めよ 1)は自力で解いてC=√(2/3a)はでたのですが、 2)以降の解き方が分かりません。どなたかよろしくお願いします。

  • 量子力学:観測後の位置・運動量の固有関数について

    量子力学のテキストなどによると、 位置の観測後、波動関数はデルタ関数に収縮する、とあります。 この後、このデルタ関数は徐々に時間と共に広がって崩壊して ゆき、この時の波束の様子を描いたものが画像のような関数だと 理解しています。 http://fairylandeureka.hp.infoseek.co.jp/hasoku.jpg  ここで質問なのですが、まず、 Q.1 この理解は正しいでしょうか? Q.2 正しいとすると、デルタ関数であるはずのこの波動関数は、   なぜ全範囲(-∞から∞)で積分したときに1になっていないの   でしょうか?   (波動関数の2乗の積分は間違いなく1になっています)  Q.3 αの値は何によって決まるのでしょうか?   この後、さらに運動量について観測を行うとします。 Q.4 この時、波束はどのような固有関数に収縮するのでしょうか?    具体的な固有関数の形を教えていただきたく思います。 Q.5 運動量観測後の粒子の存在確率密度はどのような関数に    よって与えられるのでしょうか? ※ 画像は『量子力学I/小出昭一郎/裳華房』のものです。 Q.2の積分が1にならない事は、この本をご参照いただくと   すぐにお分かりいただけるかと思います。   長年悩んでいる問題で、なんとか解決したく思っています。   質問が多いかもしれませんが、どうかよろしくお願いいたします。

  • 量子力学の基礎的な質問

    2つ質問させてください。 1.波動関数Ψを考えます。 普通|Ψ|^2=1となるように規格化すると、Ψの要素の一つをΨ_nとした場合、|Ψ_n|^2が確率としてでますよね。 もし、|Ψ|^4=1として規格化すると|Ψ_n|^4が確率になるんですか? 2.<Ψ(0)|Ф(t)>≠0の場合(カッコ内は時間)、この式の解釈としては「Ψ(0)の波動関数は時刻t秒後にФ(t)となる波動関数とその他なんらかの波動関数の重ね合わせである」 またはΨ(0)、Ф(t)に対する固有値をA,Bとすると「Aという固有値がt秒後にBという固有値に変化する可能性がある」ということでしょうか? 最近よくわからなくなってきてしまい質問しました。よろしくお願いします。

  • 波束の規格化 (量子力学)

    問題を解いてます。 波束-> u(x) = ∫ f(k) * exp(ik(x-x0))) dk  について この波動関数が規格化されているとき、 ∫|f(k)|^2 dk = 1/(2*π) を示せ。 補足: 積分範囲は[-∞ +∞] i は 虚数 質問: 規格化されているので、u(x)の複素共役が求めたいが、波動関数が積分されているので、どのように複素共役を求めればいいのかわからないです。教えていただきたいです。 どのようにしてこの問題を解いたらいいか、アドバイスをいただきたいです。 よろしくお願いします。     

  • 量子力学2体問題

    量子力学の陽子と中性子が核力によって結合している2粒子系の状態についてです。 全質量と換算質量の2つのシュレディンガー方程式をたて、その次に換算質量についてのシュレディンガー方程式を動径部分と角度部分に分け(R(r)とY(θφ))動径部分について考えます。R(r)=χ(r)/rとしてχ(r)の微分方程式を求めました。 次に核力を表すポテンシャルとしてV(r)=∞(r<a) -V。(a<r<c) 0(c<r) の斥力芯を持つ井戸型ポテンシャル(V。>0)でb=c-aとして束縛状態が基底状態であるとするときエネルギー固有値を求める関係式を求める問題なのですが、このときの基底状態とはR(r)とY(θφ)についての微分方程式=λ(=l(l+1))とするとl=0としていいのなぜですか?その理由がよくわからないです。 またこのときの規格化された波動関数とはχ(r)について解けばいいのですか? 解き方を教えて下さい。

  • 量子力学

    物理でこんな問題が出たんですが、誰かどうやって解くか分かりますか? 「電子の重ね合わせの波動関数が次のように表されたとします。(1次元)         Φ=Φ1+2Φ2-2Φ3 この重ね合わせの状態のエネルギーの期待値を求めなさい。」 この問題を解くにはまず規格化するんですよね? 規格化すると Φ=1/3(Φ1+2Φ2-2Φ3)  になりました。 で、このあとどうしたらいいか分からないんですが、誰か分かったら教えてください。

  • 量子力学の実在解釈の問題点について

    私は石頭で有名であり、最近は、石頭を通りこして「鉄頭」と言われております。 そんな私が、一番納得できないのは量子力学の確率解釈であり、感覚的に絶対に受け 入れることができません。 私は、波動関数の描像はアインシュタイン、シュレーディンガー博士らが唱えた「波動関数の2乗は、物質波の密度」のような気がしますし、彼らと同じように「電子の軌跡が存在する」という実在解釈を信じたいです。 この「波動関数の2乗は物質波の密度」だという解釈の問題点は、何であるのか? 教えてください。