• ベストアンサー
  • 困ってます

【指数分布】確率変数の和

X1,X2,...,Xnは互いに独立な確率変数であり、 それぞれ指数分布 f(x)=1/λ*exp(-x/λ) (x>0) に従います。 確率変数 Yk=X1+X2+...+Xk の確率密度関数をfk(x) とするとき、 (1)fk(x)=∫[0,∞]fk-1(x-t)f(t)dt (x>0) を示せ。 (2)fn(x)を求めよ。 (3)確率変数 Yk=X1+X2+...+Xk の期待値、分散を求めよ。 との問題なのですが、 (1)について、 XとYが独立であるとき、Z=X+Yの確率密度関数fZ(z)は 畳み込み積分で与えられるので、 fZ(z)=∫[-∞→∞]fX(x)fY(z-x)dx を...と考えたのですが 上手く証明ができません。 また、(2)について、 指数分布が事象が起きる時間間隔が従う分布だということから 要は、n回の事象が起きるまでの時間と考え、 fn(x)=n/λ だとは思うのですが、よくこれは特性関数から計算すれば良いのでしょうか... どなたか数学に詳しい方が居られましたら、 ご教授のほどよろしくお願いいたします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • Tacosan
  • ベストアンサー率23% (3656/15482)

「畳み込み積分がいまいち理解できていない」の「いまいち」がどこからを指すのかわかりませんが, とりあえず「畳み込み積分で確率変数の和の確率密度関数が表せる」ことがわかっていれば (1) は難しくないはず... というか, ほぼ「畳み込みで書ける, 終わり」のレベル. ヒントは X1+X2+...+Xk = (X1+X2+...+X(k-1)) + Xk. で (2) はすっとばして (3) については, 確率変数 X の期待値を E[X], 分散を V[X] で表すことにすると, 2つの確率変数 X, Y に対して ・E[X+Y] = E[X] + E[Y] ・X と Y が独立なら V[X+Y] = V[X] + V[Y] であることを知っていれば簡単. (1) や (2) とは無関係に解けてしまう.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

返信ありがとうございました! 「独立」をうまく利用して解くことが大事なのですね。 大変勉強になりました! ありがとうございした。

その他の回答 (1)

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

(1) 「上手く証明ができません」とはどういうことでしょうか? 具体的にはどの辺までできてどこで困っているのですか? (2) fn(x) の x はどこへいったのですか? ついでに (3) は「独立」でほぼ終わり.

共感・感謝の気持ちを伝えよう!

質問者からの補足

回答頂き、ありがとうございます! (1)畳み込み積分で確率変数の和の確率密度関数が表せる、 という知識だけはあるのですが、 畳み込み積分がいまいち理解できていない状態なので、 どう証明すれば良いかの方針が立たずにいます... (2)そうでした、その時点でまちがっていますね(*_*) (3)「独立」でほぼ終わりとは...どういうことでしょうか 指数分布の特性関数を考えると良いのでしょうか? お手数ですが、どうぞ宜しくお願いいたします。

関連するQ&A

  • 確率変数の変換について(2つの確率変数の和)

    毎々お世話になっております. このたびは,2変数の確率変数の変換について質問させていただきます. [問] X1およびX2はi.i.d.でそれぞれ[0,1]の区間で一様に分布している. Y=X1+X2の確率密度関数を求めなさい. 上記の問いに関してですが, X1,X2の密度関数はf(xi)=1 for 0<=Xi<=1 i=1,2 であり, 同時確率はf(x1,x2)=1 for 0<=x<=1 であるというところまでは分かりました. また,X1=Y-Z,X2=Zとすることで,ヤコビヤンJ=1であるというとろこまではできました. しかし,これ以降,どのように考えれば良いのかが分かりません. 直感的に,X1とX2が一様に分布しているために,Y=X1+X2は0<=y<=2の範囲に分布し, y=1のときにg(y)が最大になるのであろうと考えられ, g(y)=y for 0<=y<=1 g(y)=2-y for 1<y<=2 1という確率密度関数になるであろうことは分かります. このような考え方が正しいかどうかも含めて,この問題の解法をご教示いただけないでしょうか? 何卒よろしくお願いいたします.

  • 和の分布

    確率変数X1,X2,X3,X4がそれぞれ独立に一様分布U(-1,1)(-1と1の間の値を等確率密度でとる分布関数)に従うとき、すぐ上のことを使って, X1+X2, X1+X2+X3, X1+X2+X3+X4 の確率密度関数を求めよ。 が解けません。 だれかお時間のあるかた、ご指導お願いします。

  • 指数分布について

    確率変数Xが次のような密度関数をもつ指数分布に従っているとき 密度関数 f(x)=3exp(-3x)   t≧0   =0        t≦0 このとき 確率変数U=exp(-3X)と定義するときに、Uの従う分布はどうなるかを求めたいのですが、どうすればよいのでしょうか?? まずUの分布関数を求めて、微分をしようとしているのですが。 P(U<x)=P(exp(-3X)<x)=P(T>-1/3logx) このときの積分範囲は0からになるのでしょうか?? そうするとUの分布関数は1になり、密度は0になるということでしょうか?

  • 確率変数、分布関数と密度関数について

    独学で統計学を勉強していますが、解法がわからず煮詰まってしまい、困っている問題がありますので、質問させていただきます。 確率変数XがX~U[0,1]のとき (1)確率変数Z=5Xの分布関数、密度関数を求めよ。 (2)確率変数Y=X^2の分布関数を求めよ。 よろしくお願いいたします。

  • 確率変数の和の確率密度関数の問題

    X,Y,Zは互いに独立に一様分布U(0,1)に従う確率変数としたとき、S=X+Y+Zの確率密度関数 はどのように求めればよいのでしょうか? X+Y と同じように考えればいいのでしょうか? 宜しくお願いします。

  • 正規分布に従う確率変数同士の積の分布について

    確率変数X,Yがそれぞれ正規分布N(X|μx, σx^2),N(Y|μy, σy^2)に従っているとき,Z=X*YとおくとZの分布はどのような分布になるのでしょうか,またどのように導出すればよろしいでしょうか.参考になるHP等あればお教えください. 調べたところ,確率変数同士の和の分布について(Z=X+YのときのZの分布)は,畳み込みで求めるられ,また,正規分布に従う確率変数の自乗の分布はカイ2乗分布であることも分かりました. これらを参考にZ=X*YのときのZの分布を求めようと,畳み込み同様に変数変換を行い積分をしようとしたのですが指数部の中が複雑になり積分が手に負えなくなってしまいます...

  • 確率分布

    大学の授業でこんな問題が出ました。 確率変数X1,X2はお互いに独立であり、それぞれが平均1/s1.1/s2の指数分布に従う。 X=min(X1,X2)と定義するとき、確率変数Xが従う確率分布を求めよ。

  • 平均μの指数分布とは

    平均μの指数分布とは実現値がXである確率密度が…である。そしてその関数の逆関数をていぎすれば、ときたのですが。 まず、確率密度とはなんでしょうか?そしてこの関数の式の意味はどんなものなんでしょうか?曖昧な質問でもうしわけないのですがお願いします。

  • 正規分布+指数分布

    確率変数の和の分布について、教えて下さい! Xは平均μ、標準偏差σの正規分布に従うとします。 Yは平均 1/λ の指数分布に従うとします。 このとき、X+Yの従う確率分布を求めることは出来ますか? Xは全ての実数に対して定義されていて、Yは正の実数に対して定義されていると思うのですが、和の分布を考えても良いのでしょうか? また、その確率密度関数はどのようになるのでしょうか? 会社で読まされている電気関係の資料に出てきたのですが、大学時代に統計をきちんと勉強してこなかったので困ってます。 宜しくお願いします。

  • 均等分布された確率変数から密度を求める?

    X1,X2, ..., Xnは [0, a]で均等分布された確率変数である。 Y=X+2Yの密度を求めよ。 難しすぎて分かりません。 どなたか教えて頂けないでしょうか?