• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:高校数学、立体座標に関する質問)

高校数学、立体座標に関する質問

info222_の回答

  • ベストアンサー
  • info222_
  • ベストアンサー率61% (1053/1707)
回答No.4

No.2です。 ANo.2の補足について >本問の立体をz=tという垂直な平面できり、 この文では言葉足らずで意味が通じないので次のように書けば良いかと→ 点A(0,0,t)を通るz軸に垂直な平面による切断面(図の赤色の△BEFと△DGHの2つ)を考え >それを積み重ねると体積が求められる。というのが」実感できました。 これは問題文に書いてないけど、水色の立体図形の体積Vを求めたいのでしょうか? 一応求めてみると V=∫[0→1] S(t)dt  =∫[0→1] {1-√(1-t^2)}^2 dt=(5/3)-(π/2) (=0.095870…) となりますが。 (疑問)と問題文の >この立体を平面z=tを切ったときの断面をxy平面に図示し、この断面の面積S(t)を求めよ。 この断面を含む平面は添付図のA(0,0,t)を原点とし図のようにX軸、Y軸をとりできるXY座標平面をそっくり、2次元xy座標平面に写し変えれば 問題で求める「xy平面の図」となります。この断面の面積S(t)はすでにANo.2で求めた通りです。 ANo.3の補足について >左の図ではz=tという前提があるので、 >x軸はy=0かつz=t、y軸はx=0かつz=tを満たす。ということでしょうか? この意味は3次元xyz座標空間で、z=tの平面上に、A(0,0,t)を原点としX軸(直線AB)をx軸、Y軸(直線AD) をy軸とするXY座標平面を考え、この上に立体の切断面を描いた図を2次元xy座標平面にそのまま写像した、つまり 写しとった2次元の図が、問題が要求する「xy平面の断面図」となります。

tjag
質問者

お礼

有難うございました。 3次元について、慣れていきたいと思います。

関連するQ&A

  • 高校数学です

    直線AQと球Sが共有点を持つようにQがxy平面上を動く。Qの動く範囲を図示せよ。 S:x^2+y^2+z^2-4z=0 この問題が解けません。教えて下さい。

  • 座標変換

    3次元(x,y,z)物体の回転でよくx軸、y軸、z軸で回転がありますが、xy平面との角度φを回転させたいときはどうすればいいでしょうか? xy平面との角度をφ回転させた後の座標(X,Y,Z)はどうなるのでしょうか? また X     x Y = T・y Z     z このような行列Tが存在するのでしょうか?

  • 極座標について質問です。

    直交座標での面積を求めたい場合、極座標に置き換えても同じ面積になるのでしょうか?また、置き換えた場合はxy平面内で、同じ概形として取り扱ってもよろしいのでしょうか? ある問題で、 x=e^-tcost y=e^-tsint(0≦t≦π/2) の時、x軸とy軸とこの曲線で囲まれる面積を求めよ。という問題で極座標に置き換えて、かつxy平面で同じ概形で考えていて、疑問に思い質問しました。 よろしくお願いします。

  • 立体の体積を求める問題を教えてください

    三次元空間において、曲面z=5x^2+4xy+8y^2と平面z=1で囲まれた図形の体積の求め方を教えてください。 恥ずかしいことに、何をしていいのか全く分かりません。 z=1のときのxy平面上の図形の面積を求めて、それをz方向に積分するのでしょうか?そうだとしたら、z=1からどこまでか分かりません。囲まれたとありますから、与えられた曲面の最大値(最小値)を求めて、z=1からz=最大値(最小値)まで積分するのでしょうか? 回答よろしくお願いいたします。

  • 高校数学の問題です。

    問 x,y,zは実数であるとする。 (1)不等式 3(x^2+y^2+z^2)≧(x+y+z)^2 が成り立つことを示せ。等号が成り立つ場合も調べよ。 (2)x,y,zがx^2+y^2+z^2=x+y+zを満たすとき、 不等式 -1/8≦xy+yz+zx≦3 が成り立つことを示せ。 (1)は証明できました。 (2)の解説は以下のように参考書に載っていました。 (解説)x+y+z=tとおくと、x^2+y^2+z^2=x+y+zから、 xy+yz+zx=(t^2-t)/2 となるので、 まずtがとりうる値の範囲を調べる。 x^2+y^2+z^2=x+y+z=tを3(x^2+y^2+z^2)≧(x+y+z)^2 に代入して、3t≧t^2 よって、0≦t≦3 この範囲におけるxy+yz+zx=(t^2-t)/2の増減を調べて(省略) -1/8≦xy+yz+zx≦3を示すことができる。(終) 実数x,y,zがx^2+y^2+z^2=x+y+zを満たしているとき、 x+y+z=tは0以上3以下のある値をとる、 ということはこの解答で証明できていると思うんですが、 実数x,y,zがx^2+y^2+z^2=x+y+zを満たしながら 動くとき、x+y+z=tは0≦t≦3の範囲の『すべての』値をとりうることは 証明できていないような気がします。 どうして0≦t≦3の範囲の『すべての』値をとりうるといえるんでしょうか。 ぜひ教えてください。

  • 座標

    xy平面、xyz空間で座標を書くとき (x、y)、(x、y、z)と普通は書きます。 これを縦で書いてはいけないでしょうか?(2行1列、3行1列の行列のように) 「一般に横で書かれているのだから横に書きなさい」 とおっしゃられるかたもいると思うのですが、 座標を使って内積を作るときなど、やりやすいのです。

  • 立体図形

    yz空間に3点A(1,0,0)、B(0,1,0)、C(0,0,1/√2)がある。 いま、x≧0、y≧0、z≧0の部分に曲面Dがあり、Dとxy平面、yz平面、zx平面との交線はそれぞれ線分AB,BC,CAである。 また、線分ABに垂直に交わる任意の平面πとDとの交線は、 π上にxy平面との交線上にX軸、zxまたはyz平面との交線上にY軸をとるXY平面を設定すると、 曲線XY=1(X>0,Y>0)を平行移動させたものの一部になる。 このとき、Dとxy平面、yz平面、zx平面で囲まれた部分の体積を求めよ。 設定が難しくて、イメージがつかめません。 解答をなくしてしまったようで、どなたか解説お願いします。

  • 空間座標の問題。

    空間内に直線(x-1)/3=(y-1)/2=z-2を含む平面πがある。 (1)πが平面3x+6y-z=0に垂直であるとき、πの方程式を求めよ。 という問題がありました。 まず 3x+6y-z=0の法線ベクトルの成分は(3,6,-1) 次に (x-1)/3=(y-1)/2=z-2=tとおくと (x-1,y-1,z-2)=t(3,2,1) よって法線ベクトルとこの成分のベクトルが平行になればよいので(x-1,y-1,z-2)=k(3,6,-1) kを消去してx-y-3z+6=0と出ました。 答えはあってるでしょうか?

  • 立体の体積 極座標 (二重積分)

    次の立体の体積を求めよ。 (1)曲面z=4-(x^2)-(y^2)とxy平面で囲まれた立体 (2)球(x^2)+(y^2)+(z^2)=4が、円柱(x^2)+(y^2)=2xで切り取られる部分。 二重積分と極座標を用いるってのはわかりましたが、半径をr,角度をθとすると、それらの積分区間がわかりません。よろしくお願いします。

  • 数学

    xyz空間において、xz平面上で曲線C1:z=sinx(0≦x≦π)とx軸で囲まれた図形をD1とし、yz平面上で曲線C2:z=sin^y(0≦y≦π)とy軸で囲まれた図形をD2とする。またtが0≦t≦πの範囲を変化するとき、2点P1(t,0,sint),P2(0,t,sin^2t)を結ぶ線分P1P2が動いて描く曲面をD3とする。図形D1、D2、曲面D3、xy平面の4つで囲まれる立体図形Kの体積Vをもとめよ。 (解) x=y=tで立体図形をz軸に平行なるように切ってできた平面の面積は  1/2・√2・t(sint+sin^2t)=√2/2{tsint+(1-cos2)/2} よって求める体積は V=√2/2∫(0→π){tsint+(1-cos2)/2}dx =√2/2[-tcost+sint;1/4t^2-1/2tsin2t-1/4cos2t]0→π =√2/2(π^2/4+π-5/4) と考えたのですが、間違っていないでしょうか?