• ベストアンサー

ベクトル方程式

以下の問題の解説をお願い致します。 (1)3点O(→0)、A(→a)、B(→b)を頂点とする三角形OABがあるとき、次の図形をあらわすベクトル方程式を求めよ。  点Bと辺OAを1:2の比に内分する点を結ぶ直線 (2)一直線上にない3点O、A、Bと動点Pがある。点Oに関する位置ベクトルをA(→a)、B(→b)とするとき、次の方程式を満たす点P(→p)の軌跡を求めよ  →p・(→p-→a)=0 ご回答宜しくお願い致します。

質問者が選んだベストアンサー

  • ベストアンサー
  • gohtraw
  • ベストアンサー率54% (1630/2966)
回答No.2

(1) 辺OAを1:2の比に内分する点をQとすると、ベクトルOQは a/3です。(ベクトル記号は省略します。) よって、ベクトルBQは OQ-OB=a/3-b となるので、直線BQ上にある点のベクトルは OB+tBQ=b+t(a/3-b) で表されます。適宜式は整理して下さい。 (2) 条件はp・(p-a)=0 ですよね? p-a=APなので、 p・AP=0 つまり、OPとAPが直交するということです。 ここで、OAを直径とする円を考えると、OAに対応する円周角は90°に なります。つまり、PはOAを直径とする円周上にあります。

history94
質問者

お礼

ご回答ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (3)

  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.4

#1です。 (2)について、「直交しているから円」という場合には、 p→= 0→、p→- a→= 0→の場合分けを忘れないようにしてください。

参考URL:
http://okwave.jp/qa/q8407362.html
history94
質問者

お礼

ご回答ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。
回答No.3

(1)点OAを1:2の比に内分する点は(1/3)aだから 点Bからのベクトルは(1/3)a-b 直線のベクトルはb+t((1/3)a-b)=(1/3)ta+(1-t)b (2)p・(p-a)=0 ふむ・・・ p⊥p-aとわかる。 ということは、OとAを直径にした円になる。 B必要か?

history94
質問者

お礼

ご回答ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。
  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.1

(1) 「点Bと辺OAを1:2の比に内分する点」とは、 「辺OAの点Dに対して線分BDを1:2の比に内分する点」という意味だとします。 OD→を b→を用いて表してから、内分を考えます。 どういう直線になるかは、中学生でも答えられそうですね。 (2) 平方完成させることを考えてみて下さい。

history94
質問者

お礼

ご回答ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • ベクトルの方程式

    次の直線の方程式をベクトルを利用して求めよ。 点A(3.1)を通り、OAに垂直な直線。ただし原点はOとする。 という問題なんですが、どうやって求めるのでしょう?;; n・(p-a)=0の公式を使いそうだなと思うんですが・・・。 私の学校で数Bの授業がないので分かりやすく教えてくださると嬉しいです。

  • ベクトル

    △OABでベクトルOA=ベクトルa、ベクトルOB=ベクトルbとする。辺OAを1:2に内分する点をC、辺OBを1:3に内分する点をD、CDを4:1に内分する点をEとする。 問1 ベクトルOEをベクトルa、ベクトルbで表せ 問2 辺ABを3:1に内分する点をFとするとき、三点O,E,Fは一直線上にあることを示し、OE:EFを求めよ 上記の問題で問1と問2の一直線上を示すとこまでは解けたのですがOE:EFができません 教えてください!

  • 円のベクトル方程式 直線のベクトル方程

    平面上に原点Oと異なる点Aをとり、→(a)=→(OA)とおく。このとき次の各問いに答えよ。 ただし、→(p)は円または直線上の任意の点の位置ベクトルとする。 (1)点Aを中心とし、原点Oを通る円のベクトル方程式を求めよ。 (2)点Aを通り、ベクトル→(a)に垂直な直線のベクトル方程式を求めよ。 いまだに解き方を理解できていません。 お手数おかけしますがご協力をお願いします。

  • ベクトルについて

    三角形OABの辺ABを3:4に内分する点をCとし、 辺OAを2:1に内分する点をM、辺OBの中点をNとし、 直線MNと直線OCの交点をPとする。 OP→をOA→,OB→を用いて表せ。 という問題なのですが、 OC→=(4OB→+3OB→)/7  であることまでは求まったのですが、そこから詰まっています。 直線のベクトル方程式を使ってみたのですが、t,sを実数として MとNを通る直線上にPがあるので OP→=(1-t)(2/3)OA→+t(1/2)OB→ OとCを通る直線上にPがあるので OP→=s(4OA→+3OB→)/7 と連立方程式を立ててみましたが、どこか間違っていて答えにたどり着けません。 正答は、OP→=4OA→+3OB→/12 です。 よろしくお願いします。

  • 数学  ベクトル方程式 円 軌跡

    中心C、半径rの円上の動点Qと定点Oを結ぶ線分QCを3:2に内分する点をPとする。 OPベクトル=pベクトル、OCベクトル=cベクトルとするとき、点Pの軌跡のベクトル方程式を 求めよ。また、それはどのような図形になるか。 というのが問題です。 よろしくお願いいたします。

  • ベクトル方程式を使った問題

    ベクトル方程式を使って解く問題がわからないので質問させていただきます。 問題は 「平行四辺形OACBに対してOP→=sOA→+tOB→(s,tは実数)を満たす点Pを考える。s,tが5s+2t=4を満たすときに点Pの軌跡を求めよ」 というものです。  解答には5s+2t=4を5/4s+1/2t=1と計算し、5/4=s',1/2t=t',4/5OA→=OA'→,2OB→=OB'→とおき、 OP→=s'OA'→+t'OB'→ s'+t'=1 よって点Pの軌跡は線分OAを4:1に内分する点A'と線分OBを2:1に外分する点B'を結ぶ直線A'B' とあるのですが、なぜOP→=s'OA'→+t'OB'→の式から点Pの軌跡がわかるのかがいまいちわかりません。  どなたか教えてください。

  • ベクトル方程式について

    ベクトルの問題です。 原点Oと異なる2定点A(aベクトル),B(bベクトル)について、次のベクトル方程式で表される動点P(pベクトル)はどのような図形上にあるか求めよ 1) |pベクトル|² =2pベクトル × aベクトル 教えてください!!

  • 空間ベクトルがわかりません

    原点Oとする座標空間において、xy平面上の点A、Bおよびz軸上の点Cがある。ただし、4点O、A、B、Cはすべて異なる点とする。線分OAを2:1に内分する点をP、線分CPを1:3に内分する点をQとする。 また、OAベクトル=aベクトル OBベクトル=bベクトル OCベクトル=cベクトルとする。 (1) △ABCの重心をGとするとき、直線QGのベクトルを方程式をaベクトル、bベクトル、cベクトルを用いて表してください。 (2) 直線QGがxy平面と交わる点の位置ベクトルをaベクトルとbベクトルを用いてあらわしてください。 わかるかた教えてください。お願いします。

  • ベクトルの問題

    a=OA,b=OB とする。次の直線をベクトル方程式で表せ。 ・線分ABを2:3に内分する点Cと原点Oを通る直線 ・点Aをとおり、OBに垂直な直線 この2問なんですが、どんな図形になるか分からないので、どう式を立てれば良いか分かりません。回答お願いします

  • 位置ベクトル

    △OABにおいてベクトルa=ベクトルOA,ベクトルb=ベクトルOBとする。 辺OAの中点をM,辺OBを2:1に内分する点をNとする。 直線ANとBMの交点をPとする。 ベクトルOPをベクトルa,ベクトルbで表すと、ベクトルOP=ア/イ ベクトルa+ウ/エ ベクトルbである。 また点Pは線分ANをオ:カに内分する点である。 この問いの解き方、解説を教えてください。 答えはベクトルOP=1/4ベクトルa+1/2ベクトルb、PはANを3:1に内分 となるようです。

このQ&Aのポイント
  • Lenovoのノートブック、S540-13IMLの電源が入っているが画面が真っ暗な状態になっています。
  • S540-13IMLの電源は動作しているが、画面が全く表示されない問題が発生しています。
  • 電源が入っている状態であるにもかかわらず、S540-13IMLの画面が真っ暗なままで表示されません。
回答を見る