• ベストアンサー
  • すぐに回答を!

ベクトル

△OABでベクトルOA=ベクトルa、ベクトルOB=ベクトルbとする。辺OAを1:2に内分する点をC、辺OBを1:3に内分する点をD、CDを4:1に内分する点をEとする。 問1 ベクトルOEをベクトルa、ベクトルbで表せ 問2 辺ABを3:1に内分する点をFとするとき、三点O,E,Fは一直線上にあることを示し、OE:EFを求めよ 上記の問題で問1と問2の一直線上を示すとこまでは解けたのですがOE:EFができません 教えてください!

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

ベクトルOEとベクトルOFをだすと ベクトルOE=4/15ベクトルOFとなり一直線上と示しました ありがとうございます ------------------------------------------------------- となると、15OE=4OFですから、内項の積と外項の積を使って OE:OF=4:15 ですね^^。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

わかりました!ありがとうございます!

その他の回答 (1)

  • 回答No.1

こんばんは、初めまして。 問題2の一直線上を示すところの解答を載せていただけませんか? おそらく、OF=kOE(kは定数)から示しているのだと思いますが・・・。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ベクトルOEとベクトルOFをだすと ベクトルOE=4/15ベクトルOFとなり一直線上と示しました ありがとうございます

関連するQ&A

  • ベクトル

    模試の過去問を学校から宿題が出て やってるんですけど、少し戸惑ったので教えていただきたいのと、 途中まであっているか見て欲しいです! 問題↓ 平面上に△OABがあり、OAベクトル=aベクトル、OBベクトル=bベクトルとする。 辺OAの中点をC、辺OBを1:2に内分する点をD、辺ABを3:1に内分する点をEとする。 また線分CE上に点Pをとり、CP:PE=s:(1-s)(sは実数)とする。 1.OEベクトルをaベクトル、bベクトルを用いて表せ。またOPベクトルをs,aベクトル,bベクトル   を用いて表せ。 2.点Pが線分CEとADの交点であるときOPベクトルをaベクトル、bベクトルを用いて表せ。 3.問2のときOA=4、OB=3、∠AOB=60°とし、直線OPと辺ABの交点をQとする。   点Qから直線OAに垂線をひき、交点をRとする。ORベクトルをaベクトルを用いて表せ。 という問題で、1番はそれぞれOEベクトル=(aベクトル+3bベクトル)/4、 OPベクトル=1/2(1-s)aベクトル+s(aベクトル+3bベクトル)/4とでました。 それ以降の解き方など教えて欲しいです。 よろしくお願いします。

  • このベクトルの問題を教えてください

    このベクトルの問題を教えてください 三角形OABにおいて辺OAを3:2に外分する点をC 辺OBを1:2に内分する点をDとし線分CDを5:1に内分する点をEとする OA=a OB=b 辺ABの中点をMとするとき MEをa b を使って表せ さらに2直線MEとOAは並行か平行じゃないか答えろ この問題の詳しい解説お願いします

  • ベクトルのセンター試験の過去問です。

    ベクトルのセンター試験の過去問です。 三角形OABで辺OAを3:2に内分する点をC、辺OBを1:2に内分する点をDとする。 (1)線分ADとBCの交点をP、直線OPと辺ABの交点をQとすると、OPベクトルをOAベクトルとOBベクトルで表せ。またOQベクトルをOPベクトルを使って表せ。 (2)線分AC上に点E、線分BD上に点Fをとり、線分EFが点Pを通るようにする。OEベクトル=αOCベクトル、OFベクトル=βODベクトルとすると、α,βの間には1/?(?/α+?/β)の関係が成り立つ。 (1)はできましたが(2)が分かりません。 よろしくお願いしますm(_ _)m

  • 位置ベクトル

    △OABにおいてベクトルa=ベクトルOA,ベクトルb=ベクトルOBとする。 辺OAの中点をM,辺OBを2:1に内分する点をNとする。 直線ANとBMの交点をPとする。 ベクトルOPをベクトルa,ベクトルbで表すと、ベクトルOP=ア/イ ベクトルa+ウ/エ ベクトルbである。 また点Pは線分ANをオ:カに内分する点である。 この問いの解き方、解説を教えてください。 答えはベクトルOP=1/4ベクトルa+1/2ベクトルb、PはANを3:1に内分 となるようです。

  • ベクトル

    四面体OABCにおいて  →  → |OA|=|OB|=1 → → OA・OB=1/12 → → OA・OC=1/2 → → OB・OC=1/3 のときに、辺OAを2:1に内分する点をDとおき、線分DB上の点Pを       → → ベクトルOP、PCが垂直になるようにとる。 → →  → →   → → OA=a  OB=b  OC=cとおく。    → → → (1)OPをa、bを用いて表せ。 (2)直線APと直線OBとの交点をEとおく。    → →    OEをbを用いて表せ。 という問題なのですが、(1)は平行条件と垂直条件を使って解いてみたのですが、途中でよくわからなくなってしまいました; どなたかお願いします。。

  • ベクトル

    △OABにおいてOA=3,OB=2とし,辺ABの中点をM,角AOBの二等分線と辺ABの交点をDとする.また,直線ODに点Aから下ろした垂線の足をEとし,直線OMと直線AEの交点をFとする.また,OAベクトル=a’,OBベクトル=b’とする.(’マークをベクトル扱いにしてます) 問:OF'(OFベクトル)とDF'(DFベクトル)を求めよ OF’=kOM',OF'=OA'+tAE'の二通りで表してa',b'係数を解くのかと考えましたが,垂直条件を上手に使えませんでした. どなたか,教えていただけませんでしょうか? お願いします.

  • 高校数学:ベクトル 至急解答解説をお願いします

    問 三角形OABにおいて、辺ABを3:8に内分する点をP、線分OPを11:7に内分する点をKとする。 また、ベクトルOA=ベクトルa、ベクトルOB=ベクトルbとする。 (1)ベクトルOPを、ベクトルa、ベクトルbを用いて表せ。 また、ベクトルOKをベクトルa、ベクトルbを用いて表せ。 (2)辺OAの中点をM、辺OBの中点をNとする。 ベクトルKM⊥ベクトルOA かつ ベクトルKN⊥ベクトルOBであるとき、線分の長さの比OB/OAの値を求めよ。

  • ベクトルの問題

    ベクトルの問題で進研模試の過去問なんですけど (1)しか自力で解くことが出来ないので 分かる方は回答解説お願いします!! 問題 OA=2,OB=3,∠AOB=120°の三角形OABにおいて ベクトルOA=ベクトルa、ベクトルOB=ベクトルbとする。 また辺ABを3:1に内分する点をM、点Mと直線OBに関して 対称な点をNとする。 (1)ベクトルOMをベクトルa,bで表せ。   また、内積ベクトルa・bの値を求めよ。 (2)ベクトルONをベクトルa,bで表せ。 (3)直線OMとANの交点をPとするとき、ベクトルOPを   ベクトルa,bで表せ。 (1)はOM=1/4a+3/4b   a・b=-3となりました。 この続きを教えてください!!

  • ベクトル

    △OABにおいて辺OAを1:aに内分する点をP、辺OBを1:bに内分する点をQとし、線分BPと線分AQの交点をRとしたとき、 ORベクトル=(1-t)aベクトル+t(bベクトル/b+1) となるらしいのですが何故なのでしょうか?

  • ベクトルの質問です。

    ベクトルの質問です。 △OABにおいて辺OAを2:1に内分する点をC, 辺OBを3:1に内分する点をDとし、線分ADとBCの交点をPとする。→OA=→a, →OB=→bとして、→OPを→a,→bで表わせ。 これの解答がこの写真です。 この下線のところって内分点の位置ベクトルの公式ですか? でも、その公式は分母に比を足したものがきます。どうしてそれがないんですか?