整数の合同について

このQ&Aのポイント
  • 整数の合同について学びましょう。ある整数aとbが差がmの倍数である場合、aとbはmを法として合同です。また、aとbをmで割った時の余りが等しい場合も合同となります。
  • 具体的な例として、4を3で割った余りが1であり、7を3で割った余りも1で、10を3で割った余りも1です。これらの差は全て3となり、3の倍数です。
  • 整数aとbの差がmの倍数である場合、mで割ったaとbの余りが同じになるのは、そう定義されているからです。この性質を理解するためには、数学的な証明や定義を学ぶ必要があります。もしご興味があれば、より詳しく調べてみてください。
回答を見る
  • ベストアンサー

合同について

合同の定義は 整数aとbの差がmの倍数であるとき、aとbはmを法として合同 整数aとbをある整数mで割った時の余りが等しいとき、aとbはmを法として合同 このように二つありますが 実際に 4を3で割ると1余る 7を3で割ると1余る 10を3で割ると1余る そして10-7=3 7-4=3 10-4=6 と全て3の倍数になる。 となるというのはわかるのですが なぜ 整数aとbの差がmの倍数であるとき、mで割ったaとbの余りが同じになるのでしょうか。 そうなるものだから、と考えるしかないのでしょうか。 なぜうまい具合にそうなるのか理解できず、すっきりしません。 よろしくお願いします。

noname#188197
noname#188197

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

適切な整数p、q、r、s(商とあまり)を使って a = pm + r b = qm + s と表せるとします a - b = (p - q)m + (r - s) これがmの倍数となるので、 r-s=0 よって r=s となり aとbのあまりが同じになります。

関連するQ&A

  • 合同

    整数a,bに対し、差a-bが正の整数nで割り切れる時、a,とbはnを法として合同であるという。 30を法として(2^30)と合同である整数のうち最小値の正の整数を求める問題 (2^30)-n=30N (20^30)=m(mod30)の2つの表した方が分かりません。 (2^30) =(2^5)^6 =(32)^6 =(30+2)^6 から 30K+64とさらに計算して30(K+2)+4になることが分かりません。

  • 代数学の、整数の合同の問題を教えて下さい。

    この問題がわからず困っています。 (1)n,mは互いに素な整数とする。 このとき、sn+tm=1となる整数s,tが存在する。 a,bを整数とする時、x=bsn+atmとおく。このとき、xは合同式 x≡a mod n x≡b mod m を満たすことを示しなさい。 (2)さらに、xをnmで割った余りをrとする。この時rは r≡a mod n r≡b mod m を満たすことを示しなさい。 という問題です。 分かる方、よろしくお願いいたします

  • ○≡○≡○ のように3つ以上項がつらなる合同式

    整数a≡整数b (mod整数c) ⇔ 整数a-整数b=整数c×整数d となる整数dが存在する というのが合同式の定義ですよね ここで一つ疑問があるのですが、3つ以上項がつらなる合同式も普通に使いますよね その3つ以上項がつらなる合同式の意味は、 整a≡整b≡整c (mod整d) ⇔ 整a≡整b (mod整d) ∧ 整b≡整c (mod整d) と考えてよいのでしょうか?

  • 背理法を用いた、整数問題の証明

    a,b,cは整数とし、a^2+b^2=c^2とする。a,bのうち、少なくとも1つは3の倍数であることを証明せよ。  という問題について質問します。 a,bはともに3の倍数でないと仮定する。 このとき、a=3n+1,b=3m+1(n,mは整数)とおく。 a^2=3(3n^2+2n)+1 b^2=3(3m^2+2m)+1 ただし、3n^2+2n,3m^2+2mは整数。 よってa^2,b^2を3で割った余りはともに1である。 ※ a^2+b^2=3(3n^2+2n)+1+3(3m^2+2m)+1 =3(3n^2+2n+3m^2+2m)+2 3n^2+2n+3m^2+2mは整数である。 したがって、a^2+b^2を3で割った余りは2である。 一方、cが3の倍数のとき、c^2は3で割り切れ、 cが3の倍数でないとき、c^2を3で割った余りは1である。 すなわちc^2を3で割った余りは0か1である。 ※ よって、a^2+b^2=c^2において、 左辺は3で割ったときの余りが2、右辺は3で割ったときの余りが0か1 であるから矛盾する。 ゆえに、背理法よりa^2+b^2=c^2ならば、a,bのうち、少なくとも1つは3の倍数である。 このように解答したのですが、※と※の間の部分に対して数学の先生から、不十分というコメントを書かれてしまいました。 どこが不十分なのか分かる方がいらっしゃいましたら、教えていただけないでしょうか。 よろしくお願いします!

  • 合同式について

    k(2k^2+1)が3の倍数であることを示すために 3を法とする合同式でkを3通りに分ける問題なのですが kが3の倍数、すなわちk≡0 (mod 3)のとき k(2k^2+1) ≡ 0(2×0^2+1) ≡ 0 (mod 3) kが3で割って1余る数、すなわちk≡1 (mod 3)のとき k(2k^2+1) ≡ 1(2×1^2+1) ≡ 3 ≡ 0 (mod 3) kが3で割って2余る数、すなわちk≡2 (mod 3)のとき k(2k^2+1) ≡ 2(2×2^2+1) ≡ 18 ≡ 0 (mod 3) となると参考書に書かれているのですが この意味がよくわかりません。 k(2k^2+1)が3の倍数であることを示すためには、k( )のkの部分が3の倍数であれば k( )全体が3の倍数になるのでkが3の倍数であることがいえればいいというのはわかるのですが 例えば kが3の倍数、すなわちk≡0 (mod 3)のとき k(2k^2+1) ≡ 0(2×0^2+1) ≡ 0 (mod 3) これは3で割った時にkと0の余りが同じとき という意味だと思うのですが なぜその時に 0(2×0^2+1) このように表現するのかわかりません。 数Aの問題で数学があまり得意ではないので簡単に説明していただけると助かります。

  • 合同式と倍数

    a,b,c は整数として、a2+ b2 = c2 が成り立つとき、a、b のうち少なくとも 1 つは 3 の倍数になります。ab が 6 の倍数であることを示すにはどうすればいいですか?

  • 合同式について

    a^2+b^2+c^2=d^2を満たすとする。 (a,b,c,dは正の整数) (1)dが3の倍数でないとき、a,b,cのうち、ちょうど2つが3の倍数であることを証明せよ。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 解説には d^2≡1(∵dは3の倍数でない)とありました。 d^2≡2は議論がいらないのでしょうか。 証明もできればおねがいします。

  • 連立合同式の商の定理について

    連立合同式の商の定理について教えてください。 x,yを整数 m,aを自然数とするとき ax≡ay (mod m) ⇔ x≡y ( mod m/GCD(m,a) ) (おかしな表記ですみません。( mod -)は分数式です) が「商の定理」と習いましたが、これは連立合同式 x≡a (mod K) x≡b (mod L) x≡c (mod M) のK L M が「互いに素」ではないときに適用できる定理だと思うのですが、うまく理解できません。 解らない点:(1) 連立合同式 x≡a (mod K) x≡b (mod L) の時、K L のGCDが「1」で「互いに素」と覚えていますが x≡a (mod K) x≡b (mod L) x≡c (mod M) の時も K L MのGCDが「1」で「互いに素」、それ以上ならば「互いに素」ではないと理解してよいのでしょうか? 解らない点:(2) x≡a (mod K) x≡b (mod L) x≡c (mod M) で K L M が「互いに素」ではない場合、商の定理を適用した解法でx≡y ( mod m/GCD(m,a) )を求める方法。 K L M が「互いに素」ではない時、K L Mの最小公倍数を使えばよいのは解るのですが、GCD(m,a)の「a」が理解できません。「m」はK L Mの最小公倍数だと思うのですが、「a」は何になるのでしょう? x≡2 (mod 4) x≡4 (mod 12) x≡3 (mod 9) の場合を例として、具体的に解法を教えてください。 よろしくお願いします。もしも上式が連立合同式として成立しないのであれば、その理由も教えてください。 中国式余剰定理では、( mod ○ )が「互いに素」ではない場合にも解を求める事ができると、参考書にはあるのですが、最小公倍数を使う事しか理解できません。 具体的な解法で、よろしくお願いします。

  • 合同式の証明について

    自分の使っている参考書に書かれている合同式の証明で a≡c (mod m) b≡d (mod m)より a-c=mp b-d=mq (p,qは整数)とおくことが出来る。 よって (a+b)-(c+d)=(a-c)+(b-d)=mp+mq=m(p+q) (a-b)-(c-d)=(a-c)-(b-d)=mp-mq=m(p-q) ab-cd=(c+mp)(d+mq)-cd=m(cq+pd+mpq) ゆえに(a+b)-(c+d),(a-b)-(c-d),ab-cdはmの倍数であるから a+b≡c+d(mod m) a-b≡c-d(mod m) ab≡cd(mod m) は成り立つ。 と書かれているのですが、全体的によく理解が出来ません。 まず なぜ a≡c (mod m) b≡d (mod m) であれば a-c=mp b-d=mq (p,qは整数)と、おくことが出来るのかということと ab-cdからどのような計算をすると(c+mp)(d+mq)-cd このようになるのかもわかりません。 数学はあまり得意ではないので中学生レベルの学力でも理解できるように 説明していただけると有り難いです。

  • 合同式の性質に関して

    合同式の性質に関して、疑問があります 整数a≡整数b (mod整数c) ⇔ 整数a+整数d≡整数b+整数d (mod整数c) 整数a≡整数b (mod整数c) ⇔ 整数a-整数d≡整数b-整数d (mod整数c) は定義よりあきらかに成立しますよね じゃあ積ならどうなるのだろうと思って考えてみたのですが まず、【整数a≡整数b (mod整数c)⇔整数a≡整数b (mod整数c) ∧ 整数d≡整数d (mod整数c) と乗法の性質】から考えてこれは成り立ちますよね 整数a≡整数b (mod整数c) ⇒ 整数a×整数d≡整数b×整数d (mod整数c) でも 整数a≡整数b (mod整数c) ← 整数a×整数d≡整数b×整数d (mod整数c) が成り立つかどうかわかりません 証明しようとしたのですがうまくいきませんでした 教えてください