• 締切済み

合同

整数a,bに対し、差a-bが正の整数nで割り切れる時、a,とbはnを法として合同であるという。 30を法として(2^30)と合同である整数のうち最小値の正の整数を求める問題 (2^30)-n=30N (20^30)=m(mod30)の2つの表した方が分かりません。 (2^30) =(2^5)^6 =(32)^6 =(30+2)^6 から 30K+64とさらに計算して30(K+2)+4になることが分かりません。

みんなの回答

  • ujitaka
  • ベストアンサー率17% (3/17)
回答No.3

2^30を変形すると、(2^30)=(2^5)^6=(32)^6となります。この右辺を30を法として変形します。 (32)^6≡2^6≡64≡60+4≡4 n=4が求める数では?

  • amanita
  • ベストアンサー率41% (59/141)
回答No.2

訂正 >大事なのは、一番左の項以外は、全部の項がaで割り切れることです。 ↓ 大事なのは、一番右の項以外は、全部の項がaで割り切れることです。

  • amanita
  • ベストアンサー率41% (59/141)
回答No.1

(a + b)^n は 展開すると、 a^n + αa^(n-1)・b + βa^(n-2)・b + … + ωa・b^(n-1) + b^n の形になります。 各項の係数は、パスカルの三角形になりますが、ここではどうでもいいです。 大事なのは、一番左の項以外は、全部の項がaで割り切れることです。 だから、(30+2)^6 は 30K+2^6 に変形できます。

関連するQ&A

  • 整数の求めかた

    整数a,bに対し、差a-bが正の整数nで割り切れる時、aとbはnを法として合同であるという。 30を法として2^(30)と合同である整数のうち最小の正の数はという問題なのですが (2^(30))-n=30N (2^(30))≡n(mod30) (2^(30))=30K+64 =30(K+2)+4 の意味(式)がよく分かりません

  • 二次合同方程式の解法過程について

    Mr_Holland さんが以前回答された過程で、 「x≡±1 (mod 3)・・・・(1) ∴x=3n±1」・・・・・・(2) と 「±2n≡2 (mod 3)・・・・(3)  この合同式は ±n=1 のとき成立するので・・・(4)  ±n=3m+1 (m:整数)とおける。」・・・・・(5) の2つの展開が異なっているのが、よくわかりませんのでご教授願います。 【補足】 前者は展開が納得できるのですが、 後者は、 ±n=1(mod 3)から ⇔n=±1(mod 3)と同じだから、 ⇔n=3m±1と展開できるので、 (5)式±n=3m+1と異なります。 後者の妥当性が知りたいです。 以下、Mr_Holland さんからの 回答 2010-11-17 10:57:57 回答No.2 Mr_Holland  ANo.1は煩雑でした。  もう少しスマートに計算することができましたので、以下に示します。  x^2≡7 (mod 27) ⇒x^2≡7 (mod 9) ⇒x^2≡1 (mod 3) ⇔x≡±1 (mod 3) ∴x=3n±1 (n:整数)とおける。  以下、複号同順とします。  x^2=(3n±1)^2= 9n^2±6n+1 だから   x^2≡±6n+1≡7 (mod 9)  ∴±6n≡6 (mod 9)  ∴±2n≡2 (mod 3)  この合同式は ±n=1 のとき成立するので ±n=3m+1 (m:整数)とおける。  x^2=9(3m+1)^2+6(3m+1)+1 =81m^2+72m+16 だから   x^2≡18m+16≡7 (mod 27)  ∴18m+9≡0 (mod 27)  ∴2m+1≡0 (mod 3)  この合同式は m=1 のとき成立するので m=3k+1 (k:整数)とおける。   x=3n±1=±(±3n+1)=±{3(3m+1)+1}=±(9m+4)=±{9(3k+1)+4}=±(27k+13)  ∴x≡±13 (mod 27)  ∴x≡13,14 (mod 27)

  • 合同について

    合同の定義は 整数aとbの差がmの倍数であるとき、aとbはmを法として合同 整数aとbをある整数mで割った時の余りが等しいとき、aとbはmを法として合同 このように二つありますが 実際に 4を3で割ると1余る 7を3で割ると1余る 10を3で割ると1余る そして10-7=3 7-4=3 10-4=6 と全て3の倍数になる。 となるというのはわかるのですが なぜ 整数aとbの差がmの倍数であるとき、mで割ったaとbの余りが同じになるのでしょうか。 そうなるものだから、と考えるしかないのでしょうか。 なぜうまい具合にそうなるのか理解できず、すっきりしません。 よろしくお願いします。

  • 代数学の、整数の合同の問題を教えて下さい。

    この問題がわからず困っています。 (1)n,mは互いに素な整数とする。 このとき、sn+tm=1となる整数s,tが存在する。 a,bを整数とする時、x=bsn+atmとおく。このとき、xは合同式 x≡a mod n x≡b mod m を満たすことを示しなさい。 (2)さらに、xをnmで割った余りをrとする。この時rは r≡a mod n r≡b mod m を満たすことを示しなさい。 という問題です。 分かる方、よろしくお願いいたします

  • 線形合同式と数列周期

    a,b,kを a≡1(mod4)、bと2との最大公約数が1、k>=2 を満たす自然数とすると、 線形合同式 x_(n+1)≡a*(x_n)+b mod 2^k ただし 0<= (x_n) <2^k で定義される0から(2^k)-1の間の整数による数列{x_n} は、任意の初期値x_0 に対して 周期が2^kであることを示せ。 わかりません。。よろしくお願いします!!

  • フェルマの小定理と位数に関する質問です

    問題) pを素数とします。また、aをpで割り切ることのできない整数とします。 この時、a^n≡1(mod p)となる最小の正整数nをmとすると p≡1(mod m)であることを証明したいです。 証明) まず、フェルマの小定理より、 n=p-1のとき、a^n≡1(mod p)が成り立つことが分かります。 よって、n=p-1がa^n≡1(mod p)となる最小の正整数nの場合、 m=p-1なので、明らかにp-1をmで割り切ることができるため、 p≡1(mod m)である。 (ここからが分かりません。。。) 次に、n=p-1がa^n≡1(mod p)となる最小の正整数nでない場合、 つまり、m<p-1となるmが存在する場合、 そのmによって、p≡1(mod m)が成り立つことを証明したいのですが、よく分かりません。 どなたか詳しい方、ご教授お願いします。 途中までの証明も不適切(不要)でしたら指摘してください。 よろしくお願いします。

  • 連立合同式の商の定理について

    連立合同式の商の定理について教えてください。 x,yを整数 m,aを自然数とするとき ax≡ay (mod m) ⇔ x≡y ( mod m/GCD(m,a) ) (おかしな表記ですみません。( mod -)は分数式です) が「商の定理」と習いましたが、これは連立合同式 x≡a (mod K) x≡b (mod L) x≡c (mod M) のK L M が「互いに素」ではないときに適用できる定理だと思うのですが、うまく理解できません。 解らない点:(1) 連立合同式 x≡a (mod K) x≡b (mod L) の時、K L のGCDが「1」で「互いに素」と覚えていますが x≡a (mod K) x≡b (mod L) x≡c (mod M) の時も K L MのGCDが「1」で「互いに素」、それ以上ならば「互いに素」ではないと理解してよいのでしょうか? 解らない点:(2) x≡a (mod K) x≡b (mod L) x≡c (mod M) で K L M が「互いに素」ではない場合、商の定理を適用した解法でx≡y ( mod m/GCD(m,a) )を求める方法。 K L M が「互いに素」ではない時、K L Mの最小公倍数を使えばよいのは解るのですが、GCD(m,a)の「a」が理解できません。「m」はK L Mの最小公倍数だと思うのですが、「a」は何になるのでしょう? x≡2 (mod 4) x≡4 (mod 12) x≡3 (mod 9) の場合を例として、具体的に解法を教えてください。 よろしくお願いします。もしも上式が連立合同式として成立しないのであれば、その理由も教えてください。 中国式余剰定理では、( mod ○ )が「互いに素」ではない場合にも解を求める事ができると、参考書にはあるのですが、最小公倍数を使う事しか理解できません。 具体的な解法で、よろしくお願いします。

  • 合同式の証明

    (1)5^2^m≡1(mod 2^(m+2))が成り立ち, 5^2^m≡1(mod 2^(m+3))が成り立たない事を、mに関する数学的帰納法で示せ。(2) (1)の結果を利用して、5^2^(n-2))≡1(mod 2^n)(n≧2) が成り立ち, 5^2^(n-3)≡1(mod 2^n)(n≧3)が成り立たない事、(3) 5^2^(m-1)≡-1(mod 2)(m≧1)が成り立ち, 5^2^(m-1)≡-1(mod 2^n)(m≧1, n≧2)が成り立たない事を示せ。(1)~(3)の合同式を解きたいのですが解法がわかりません。教えてください。よろしくお願いします。

  • 2009年度の関西大の入試問題(数学)です。

    2009年度の関西大の入試問題(数学)です。 過去問にも載っておらず、解答の確認ができないため、お伺いした次第です。 行列A=[[-1,-√3],[√3,-1]]、正の整数nとしA^n=[[a_n,b_n],[c_n,d_n]]とおく。 (中略)|b_n|>10^100となる最小の整数nを求めよ。 log_10(2)=0.3010,log_10(3)=0.4771を用いよ。 A^4まで手計算で出して、A^4=8Aがわかって、 そのあと自然数kを使って n=3kで|b_n|=0(題意に適さないので除外) n=3k+1で|b_n|=8^k√3 n=3k+2で|b_n|=8^k・2√3 と場合分けして、 それぞれにおける最小のkを出した結果、n=334と出ましたが、この方法で合っていますでしょうか。

  • 合同式

    10^n≡1(mod 13)を満たすnを求める方法がわからず、質問します。 10^n-1=13k(kは整数)としたり、 10^n-1=(10-1){10^(n-1)+10^(n-2)*1+10^(n-3)*1・・・+10+1} としてみたりしましたが、解けませんでした。 どなたか、(できれば高校生でもわかるような)解き方をおしえてください。 お願いします。