• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:カントールの対角線論法についておしえてください。)

カントールの対角線論法とは?

old_shoの回答

  • old_sho
  • ベストアンサー率38% (20/52)
回答No.26

bragelonneさん、なかなか頑張って居られますね。このサイトの規約に文句を言われるかも知れませんが、他の回答者に言及します。 NemurinekoNyaさんはとうとう白旗ですか。選択公理のスカートの下に逃げた、というと侮蔑になるので、撤回しますが、そのような印象を持ってしまいます。なぜなら、支離滅裂になっているからです。NemurinekoNyaさんは、「選択公理が不成立なら、自然数全体の集合と実数全体の集合は1対1対応できる」と言っている事になるのですよ。「無理数の集合を可付番の集合とする数学の構築も可能」とはそういう意味でしょう。 NemurinekoNyaさんの論理がひっくり返ってしまったは、「ナンバーリング」に選択公理が必要だという思い込みからのようです。しかし、カントールの対角線論法は、「ナンバーリング」ができたと仮定するところから始まるのですよ。「無理数全体の集合を可付番の集合とする」ことを否定しているのですよ。 言葉は悪いですが、NemurinekoNyaさんがbragelonneさんの手に落ちた最大の原因は、選択公理等ではなく、No.14で、 >原理的には、一つづつ拾い上げて行くことは可能ですが、 と言ってしまった事です。 ここから、bragelonneさんへも言及することになります。 その場合の「可能」というのは、数えるという行為をしたければ勝手にすればよい、あなたにはそれをする自由がある、という事に過ぎない。それを「原理的に可能です」などという勝手な事は言ってはいけないのですよ、NemurinekoNyaさん。原理的に不可能であるというのがカントールの証明なのですよ。bragelonneさんが自然数も実数も同じく無限にあるのだから数え得ると主張するのは、ですから、あなたの自由です。数学で言っているのは、自然数と実数とは1対1対応はつかないということであって、数えるという行為をしたければ勝手にすればよいのです。 最初にサラリーマン氏の勇み足と書きましたが、それは不用意にリストアップする等と言う言葉をはさんだ事を差しています。その言葉が「bragelonneさんにつけ入る隙を与えた」、リストアップできるなら数える事はできると。 ---規約違反と言われるなら、いつ消去されてもかまいませんが、取敢ず以上です。

bragelonne
質問者

お礼

 わっかんない。  まづは おうるど_しょさん お早うございます。ご回答をありがとうございます。  ひとつに こうですか?  つまり――引用するとき 簡単なように符号をつけます――    (あ) すでに――へんな言い方をすれば――片が付いていることだ。  (い) ゆえに その定理も証明法もゆるがない。  (う) しかも その揺るがなさというのは ほかの考え方を採りたければ 採るがよい。  (え) というかたちで成り立っている。に過ぎない。  (お) つまり 選択公理は 公理なのだ。  (か) すべては そこから出発するのだ。  (き) あなたは 出発するかしないかだ。  (く) どっちをえらぼうと 自由である。  (け) 公理から船出したなら 確実に港に着く。  (こ) その一連のわざは 確定するのだし すでに確定している。  No.23の補足欄に さきほどあらたに考え直したことを書き込みました。それを参照していただければさいわいですし 上の受け留め方について合わせて捉えていただけるかと思います。  つまり もう感想とか印象のようなことになりますが 選択公理と言いますかその公理の立て方 そしてその仮定の中にひそかにすべり込ませた対角線論法をまんまと行使したということ この技法について おうるど_しょさんは ズルイとお思いになりますか?

関連するQ&A

  • 対角線論法(?)について

    オートマトン言語理論計算論I(サイエンス社)という本の第7、8ページに すべての無限集合が等しい濃度を持つわけではない例として、 「整数全体の集合と実数全体の集合について考えてみよう。仮に、実数の 全体が正整数と1対1に対応づけられたとする。そのとき、各 i=1,2,3,… について小数点以下 i 桁目が、第 i 番目の実数(上の対応で正整数 i に 対応づけられた実数)の小数点以下 i 桁目の数字に法10のもとで5を加え た数であるような実数を考える。するとこれは上で正整数と対応づけられた どの実数とも異なる数である。このことから、実数全体と正整数を1対1に 対応づけることがそもそも不可能だったことがわかる。」 とあり、この議論が対角線論法と呼ばれるそうですが、何度読んでもさっぱ り理解できないのです。 特に 「そのとき、各 i=1,2,3,…について小数点以下 i 桁目が、第 i 番目の実数 (上の対応で正整数 i に対応づけられた実数)の小数点以下 i 桁目の数字に 法10のもとで5を加えた数であるような実数を考える」 がイメージできないのです。 もし対角線論法について理解されてる方がいらっしゃいましたら、是非とも ご教授願いませんでしょうか? よろしくお願いします。

  • 自然数と小数を1対1対応で対角線論法し無矛盾したい

    自然数と有理数(循環小数)を1対1対応をつけて、対角線論法して無矛盾したいです。 自然数を1から始めることにします。 斜めに拾った数字で数を作ります。 有理数は循環小数なので、0.1010101・・・を0⇔1変換すると 0.0101010・・・になるのでは?が基本アイデアです。 自然数と有理数(循環小数)の一部を2進数表記にして 対応付けを作ります。 リスト1 1:11/12 =0.916666666・・・は2進数表記で  0.1110101010101… 2:8 /12 =0.666666666・・・は2進数表記で  0.1010101010101… 3:11/48 =0.229166666・・・は2進数表記で  0.0011101010101… 4:8 /48 =0.166666666・・・は2進数表記で  0.0010101010101… 5:11/192=0.057291666・・・は2進数表記で  0.0000111010101… 6:8 /192=0.416666666・・・は2進数表記で  0.0000101010101… 7:11/768=0.014322916・・・は2進数表記で  0.0000001110101… 8:8 /768=0.010416666・・・は2進数表記で  0.0000001010101… . n:11/3*2^(n+1){nは奇数}は2進数表記で 0.(0がn-1個続いて)11101010101… n:8 /3*2^(n ){nは偶数}は2進数表記で 0.(0がn-2個続いて)10101010101… . . 1つ目の有理数(循環小数)の小数1桁目を0⇔1反転し、 nつ目の有理数のn桁目を0⇔1反転して 対角線論法で作った2進数は0.010101010101…です。 でもリスト1に数がないです。 2つ目と3つ目の間に0.0101010101010…を入れると、 対角線論法で作った2進数が変わってしまい、うまくいきませんでした。 しょうがないので一桁づらしてリスト2を作ります。 リスト2 1:11/24 =0.4583333333・・・は2進数表記で  0.0111010101010… 2:8 /24 =0.3333333333・・・は2進数表記で  0.0101010101010… 3:11/96 =0.1145833333・・・は2進数表記で  0.0001110101010… 4:8 /96 =0.0833333333・・・は2進数表記で  0.0001010101010… 5:11/384 =0.0286458333・・・は2進数表記で  0.0000011101010… 6:8 /384 =0.0208333333・・・は2進数表記で  0.0000010101010… 7:11/1536=0.0071614583・・・は2進数表記で  0.0000000111010… 8:8 /1536=0.0052083333・・・は2進数表記で  0.0000000101010… . n:11/3*2^(n ){nは奇数}は2進数表記で 0.(0がn-1個続いて)01110101010… n:8 /3*2^(n+1){nは偶数}は2進数表記で 0.(0がn-2個続いて)01010101010… となって、リスト2の2つ目にリスト1から対角線論法で作った数が出てきます。 なんとなく自然数と有理数の一部が対応したような感じがします。 リスト1とリスト2個別にみれば 単調増加なので同じ有理数に、違う自然数が対応してるような 感じがします。 ・基本的に誤りでしょうか? ・リストが2つに分かれちゃいましたが1つにまとめられますか? ・有理数全体の有限小数でつまり、循環のパターン110とか001とか がたくさんあっても対角線論法で、無矛盾するためには どうすればよいでしょうか?

  • 「無理数全体の集合Pについて、|P|>N0(アレフゼロ)を示せ」

    「無理数全体の集合Pについて、|P|>N0(アレフゼロ)を示せ」 という問題がわかりません。解き方を教えて下さい。 教科書には実数の集合の濃度がアレフゼロより大きいことの証明が載っていて、それは無限小数に関する対角線論法を使っていたので、同じ方法で証明しようとしたのですが、その場合、対角線論法により作られた新しい無限小数が無理数に含まれることを示せなかったので挫折しました。(当然実数には含まれるのですが・・・)この方法でできるのでしょうか?それとも全く違った方法を使うのでしょうか?  よろしくお願いします。

  • 実数と自然数は同じ個数なのではないでしょうか?

    すべての自然数とすべての実数を1対1で対応させる(すべての実数を一列に並べる)方法を考えました。間違いがあれば教えてください。 *方法1*「後出し」は実数の専売特許にあらず まず、すべての自然数と、異なる実数を無限に並べたもの、とを対応させるのだが、それは、異なる実数を無限に並べた「第一列」の「一番目」の実数を「1・1」とすると、 1→1・1 2→1・2 3→1・3 ・ ・ ・ と表すことができる。これはいわゆる「すべての自然数とすべての実数を1対1に対応させたと仮定したもの」であり、対角線論法によってこの表には存在しない実数を作れることから、仮定は間違い=「実数は自然数より多い」という結論になるのが従来の話である。しかしこれは、自然数を対応させる対象を「第一列」に限定したことによる間違った結論だ。 対角線上の数字のずらし方は、すべて一つずらす1111…の他に、1211…,1234…,2624…と無限にあるので、一つの対角線から、「第一列」には存在しない実数を無限に生み出すことができる。対角線論法によって生み出された無限の実数を並べた「第二列」に自然数を対応させることができなければ先の結論は正しいことになるが、そんなことは全然なく、「第二列」の「一番目」の実数を「2・1」とすると、 1→1・1 2→2・1 3→1・2 4→2・2 5→1・3 6→2・3 ・ ・ ・ のように、始めの、自然数と「第一列」の対応を解消した後、あらためて自然数を、「第一列」と「第二列」に、交互に対応させればいいだけの話なのだ。で、これは、「第一列」と「第二列」を合わせて「新たな第一列」にした(=始めの状態にリセットした)ということであり、この「新たな第一列=N1」の対角線から、対角線論法によって「新たな第二列=N2」が生まれるので、そしたらまたそれまでの対応を解消して 1→N1・1 2→N2・1 3→N1・2 4→N2・2 5→N1・3 6→N2・3 ・ ・ ・ と、自然数を「新たな第一列」と「新たな第二列」に交互に対応させ、これを無限に繰り返せばいいのである。自然数を、「新たな第二列」の実数に、無限に対応させ続けることができるということは、すなわち両者の個数は同じということなのである。 それにしても、無限に生み出される「新たな第一列」と「新たな第二列」は合わせて「新たな第一列」にできるのに、なぜ始めから一列に並べることができないのか。 方法1を別の言い方でまとめると、まず 1→1・1 2→1・2 3→1・3 ・ ・ ・ のように、すべての自然数と、異なる実数を無限に並べたもの、とを対応させるところから始めて、次に 1→1・1 2→  ←2・1 3→1・2 4→  ←2・2 5→1・3 6→  ←2・3 ・ ・ ・ と、「第二列」の実数を「第一列」に割り込ませて、始めの、すべての自然数と、異なる実数を無限に並べたもの、とを対応させた状態 1→1・1 2→2・1 3→1・2 4→2・2 5→1・3 6→2・3 ・ ・ ・ ↓ 1→1・1(1・1) 2→1・2(2・1) 3→1・3(1・2) 4→1・4(2・2) 5→1・5(1・3) 6→1・6(2・3) ・ ・ ・ にリセットして、そしたらまた 1→1・1 2→  ←2・1 3→1・2 4→  ←2・2 5→1・3 6→  ←2・3 ・ ・ ・ と、「第二列」の実数を「第一列」に割り込ませて…とこれを無限に繰り返す、といった具合に説明することができる。 *方法2*実数を整列させる 方法1は「動的な対応」とでも言うべきものであり、できれば「静的な対応」が望ましいわけで、そのためには実数を整列させる必要があるのだが、以下のようなやり方ではだめなのか。 まず 1→0.1 2→0.2 ・ ・ ・ 9→0.9 10→0.01 11→0.11 12→0.21 ・ ・ ・ 99→0.99 100→0.001 101→0.101 102→0.201 ・ ・ ・ 9999→0.9999 10000→0.00001 10001→0.10001 10002→0.20001 ・ ・ ・ …835218→0.812538… …835219→0.912538… …835220→0.022538… ・ ・ ・ というように、すべての自然数と、0と1の間のすべての実数を、1対1に対応させる。右側が「0と1の間のすべての実数」であることに異論はあるだろうか。この列に存在しない(0と1の間の)実数は存在するのか。この列は、小数第一位の数字が1,2…9,0,1…9,0,1…となっているので、だいたいその値で推移しながら、実数が、0と1の間を無限に埋めていく形になっている。 例えば、小数点以下、一恒河沙の一恒河沙乗番目が2、一阿僧祇の一阿僧祇乗番目が3、一那由他の一那由他乗番目が4の 0.1…2…3…4… のような無理数について、この並びの途中までのものしかないとしたら、ではどこまでのものならあるのか。0.1…2か、0.1…2…3か、0.1…2…3…4か。実際には「途中まで」などということはなく、つまりこの列にこの無理数は存在し、この任意の無理数が存在するなら(0と1の間の)すべての無理数が存在するのである。で、この表は左右が対称的になっているから、右に無限小数が存在するなら左には無限桁の自然数が存在するのである。 有限桁の自然数を重複することなく無限に並べることができないのと同様に、有限小数を、重複することなく無限に並べることはできない。この列は0と1の間の実数を整列させたものであり、この列に存在しない(0と1の間の)実数は存在しない。 で、すべての実数を整列させると 0,0.1,0.2…0.9,0.01,0.11,0.21… 1,1.1,1.2…1.9,1.01,1.11,1.21… 2,2.1,2.2…2.9,2.01,2.11,2.21… ・ ・ ・ (0),-0.1,-0.2…-0.9,-0.01,-0.11… -1,-1.1,-1.2…-1.9,-1.01,-1.11… -2,-2.1,-2.2…-2.9,-2.01,-2.11… ・ ・ ・ となるので、すべての自然数とすべての実数を1対1に対応させると、 1→0 2→0.1 3→-0.1 4→1 5→-1 6→2 7→-2 8→1.1 9→-1.1 10→0.2 11→-0.2 12→0.3 13→-0.3 14→1.2 15→-1.2 16→2.1 17→-2.1 18→3 19→-3 ・ ・ ・ のようになる。 ところでそれでも従来の考えが正しい場合、循環小数と非循環小数の個数に差が出る本質的な原因、両者の違いは何なのか。明確な違いは「整数比で表せるか表せられないか」だが、循環小数と非循環小数をそれぞれ循環数列と非循環数列に置き換え(今問題にしているのは個数であり、小数点を取り除いても個数は変わらない)れば整数比は関係なくなるわけだし。単なる数字の組み合わせに過ぎない同じ無限数列でありながら、循環させないというだけで個数が多くなるというのは何とも妙な話である。

  • 対角線論法 10進数展開

    対角線論法を用いて、自然数全体の集合と[0,1]区間の間には全単射な写像は定められないということを示す証明を読んでいて疑問に思ったのですが、 循環しない少数は10進数展開が一意には定まらない(例えば、2/5=0.400…=0.399…)のに、なぜ「実数a,bに対して、a,bの少数第n位が異なればa,bが異なる」というようなことができるのでしょうか? あと、循環しない少数ではない実数(1/3とか√2とかπとか)の10進数展開は一意に定まると思うのですが、その証明が考えてもわかりません。知っている方がいたら教えてもらえないでしょうか? 最後に、10進展開についても疑問があるのですが、 「実数aが10進展開できる」とはどういうことなのでしょうか? これは、An=k(n)/(10^n) (ただし0≦k(n)≦9)という数列の級数がaと一致する。すなわち、級数の部分和がaに収束する ということなのでしょうか? それとも、 {ΣAn}⊂Map({整数},{有理数})という集合(今度はAnのnは整数にすることにします。雰囲気的にはΣはローラン展開のΣに近いと思います。あと、-9≦k(n)≦9ということにします。)に自然に和を定義し、積を(小学校のときの筆算を自然に拡張する意味で)自然に定義します。そのとき{ΣAn}が体をなすことを示し、{実数全体}と{ΣAn}が同型であるとき、実数aに対応する{ΣAn}の元をaの10進展開と呼ぶのでしょうか? 以上です。よろしくお願いします。

  • 有理数無理数の定義とはなにか答えられる方いませんか?

    有理数や無理数はどのように厳密に定義されるのですか? 有理数は2つの整数の比である。 循環する無限小数である。 無理数は循環しない無限小数である。 などを耳にしますが、(無限)小数の定義は何?とか思うのですが そのように考えるのはおかしいでしょうか? 自然数や整数を定義する際に用いる言葉で有理数が定義されるべきではないのですか!? 高校生などに教える際の有理数や無理数の定義が知りたいのではなく。 どのような過程を経て、これらの数は矛盾なく定義されるのか"詳しく"知りたいです。 自然数から整数を構成して、そこから有理数→実数(無理数)という流れですよね。 こうゆうのは"群"などの話になるんでしょうか? 知っている方、回答よろしくお願いします! あと、この質問文のような内容が独学で勉強できる本でオススメなものがあれば、ぜひ教えていただきたいです。

  • 無理数や無限に区切れる小数を含めた場合でも、不完全性定理は成り立ちますか?

    無限小数や無理数を導入すると、不完全性定理は成り立たなくなるでしょうか? お答えお願いします。

  • 対角線論法による全単射有無の証明について

    以下、Wikipediaの対角線論法の項目です。 http://ja.wikipedia.org/wiki/%E3%82%AB%E3%83%B3%E3%83%88%E3%83%BC%E3%83%AB%E3%81%AE%E5%AF%BE%E8%A7%92%E7%B7%9A%E8%AB%96%E6%B3%95#.E8.87.AA.E7.84.B6.E6.95.B0.E3.81.AE.E9.9B.86.E5.90.88.E3.81.A8.5B0.2C_1.5D.E5.8C.BA.E9.96.93.E3.81.AE.E6.BF.83.E5.BA.A6.E3.81.AE.E9.81.95.E3.81.84 こちらをみていて思ったのですが、RをQ(有理数)と読み変えてもこの証明が可能なように思えてしまいます。はて、自然数は有理数に対して全単射のはず…。 (例えば、全ての有理数をp/qの形で表し、(p,q)なる数字の組み合わせとして番号付加すると、自然数と1対1対応できてしまいます。) Wikipediaの証明が、Q(有理数全体)では成り立たないことを教えてください。

  • 有理数と無理数について

    「有理数は有限小数または循環小数となり、無理数は循環しない無限小数となることを示せ」という問いに関してアドバイスを下さい。   私的に考えた解答を書いてみます。  有理数とは、mおよびnが整数である時、m/nを有理数と呼ぶ。つまり、有限小数または循環小数が分数であるならば、有理数は有限小数または循環小数と言える。 例えば循環小数A=0.12121212・・・・を分数にする。 (10xA)-A=(12.12121212・・・)-(0.12121212・・・)     9A=12      A=4/3 となり、循環小数Aは分数となり有理数は有限小数または循環小数である。・・・・・どうでしょうか? 「無理数が循環しない無限小数である」というのは実数数において有理数以外のものが無理数だと認識している私は、分数表示できない数は無理数である・・としか示せないので、なんだか上手に表現できません。 アドバイス待ってます。

  • 無限論?

    カントールは確か、無限にも大小があると言っていますよね。2の倍数と3の倍数(ここでは、2nや3nなどと表現してnは自然数とします。つまり2,4,6などの集合と3,6,9などの集合です)は2の倍数が大きいと考えても良いのでしょうか?