• 締切済み

弧状連結を示す問題

多様体の問題で分からない問題があったので教えてください。 3次元ユークリッド空間の部分集合 M= { (x,y,z)| z^2 = 1- xy } を考えます。 これが弧状連結である事を示せ。 というのが問題です。 その前の小問でこれが2次元多様体である事は分かっています。 そこで連結性を示せばよいのかと思いましたが、どうやればいいのか分かりません。 弧状連結の定義に戻って2点を繋ぐ曲線を考えようとしましたが上手くできません… 分かる方いましたら回答お願いします。

みんなの回答

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

z^2 + (1/4)(x+y)^2 - (1/4)(x-y)^2 = 1 と変形してみれば、一葉双曲面↓であることが判りますね。 http://upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Quadric_Hyperboloid_1.jpg/120px-Quadric_Hyperboloid_1.jpg x-y の値を変えない経路で、曲面上を z : x+y の比が他方の点と同じになるところまで移動し、 そこがゴールでなければ、 z : x+y の比を変えない経路で、曲面上を x-y の値が他方の点と同じになるところまで移動すれば、 曲面上の任意の2点を孤連結することができますよ。

  • tmpname
  • ベストアンサー率67% (195/287)
回答No.1

正直にA=(x0,y0,z0), B=(x1,y1,z1)∈Mとして、 AとBとを結ぶ道を探せばよいです 1.まずAからx座標を固定し、z座標の符号を変えないように y座標を0まで移動します。z0が元々0だった場合は動かすとき z座標の符号を決めて動かします(これが出来るのは何故か?) ここで、AがCに移動したとします 2. Bについても同様に動かし、Dに移動したとします 3a CとDのz座標の符号が同じ場合は、Cからx座標を動かして Dまで移動させればいいです。 3b.z座標の符号が違う時は、 3ba先ずCのx座標が0の場合は、x座標を適当に少し動かします 3bb次にCのy座標を、x座標と同じ符号の方向で絶対値が大きく なる方向に、z座標が0になるまで動かします 3bc次に再びy座標を0まで動かしますが、今度は3bの最初の時と z座標の符号が反対になるようにします。 4bdそして3aの場合に戻ればよいです とここまで書いて、最初からz0とz1の符号が同じか違うかに 分けて書いた方が楽だったことに気づきましたが、後はきれいに まとめてください。

関連するQ&A

  • 位相空間論の問題です

    Aをn次元ユークリッド空間(R^n,d(n))の開集合とし、 部分位相空間(A,O(A))とするとき、次の(i)(ii)を示して下さい。 (i)Aの弧状連結成分は開集合であること (ii)Aは連結ならば弧状連結であること どなたか教えてください。よろしくお願いします。

  • 位相空間

    分からない問題があります!教えてください! 1次元ユークリッド空間R^1の上の関係  R={(x,y)∈R^1×R^1|x-y∈Z} について以下を示せ(Zは整数全体) (1)Rは同値関係である。 (2)商空間R^1/Rはコンパクトである。 (3)商空間R^1/Rはハウスドルフである。 (4)商空間R^1/Rは弧状連結である。 どなたかよろしくおねがいします!

  • 弧状連結

    集合X={1,2,3}の位相Aを A = {空集合,{1},{1,2},{1,3},X} で定めた時、位相空間(X,A)は弧状連結である という例が参考書に載っていました。なぜこれは弧状連結といえるのでしょうか?

  • 弧状連結とコンパクト 幾何学の問題です

    R^2の部分集合X={(x,y)∈R^2:x^2+y^2≧1,|x|+|y|≦5}がコンパクトであるか、また、弧状連 結であるかそれぞれ調べなさい。 X={(x,y,z)∈R^3:x^2-y^2-z=0,x^2+y^2≧2}はR^3の連結部分集合であるがコンパクト集合でないことを示せ。 の2題なんですが、どう解けばいいかわかりません。どちらかだけでもかまいません!教えていただけないでしょうか? よろしくお願いします!

  • 弧連結とは?

    http://ja.wikipedia.org/wiki/%E9%80%A3%E7%B5%90%E7%A9%BA%E9%96%93 集合Xが連結であり、且つ局所連結であるとき、弧状連結になるそうなのですが、 局所連結の意味がよく分かりません。 上記のページでは、sin(1/x) のグラフ(topologist's sine curve; 位相幾何学者の正弦曲線)は連結だが弧状連結でない位相空間の例として挙げることができる、と書かれてあるのですが、 sin(1/x)はなぜ局所連結ではない、ということが分かるのでしょうか? どなたか易しく教えて下さい。

  • 連結について

    位相空間Xにおいて、Aを稠密な集合とするとき、商空間X/Aは連結であることを証明せよ。 (ただし     x,y∈Xについて     x~y⇔x=y またはx,y∈Aとする。    P:X→X/~,射影    T={H:HのPによる逆像がXの開集合}    X/A=(X/A,T)とする。        ) この問題の証明で分からないところがあるので教えて頂きたいと思います。 本の解答には 証明)P(A)=yとする。{y}は連結で、かつX/Aで稠密。と書いてありました。 質問1.商集合というのは集合族ですよね? 質問2.P(A)も集合族ではないのですか? 質問3.P(A)は1つの同値類から成る集合族だと思うのですが、合ってますか? あと、この問題の証明を解説してもらえると嬉しいです。 よろしくお願いします。

  • 連結とHausdorffについて

    宜しくお願い致します。 『(X,T)を位相空間とする。 ∃G1,G2∈T such that X=G1∪G2,G1∩G2=φ の時、Xは非連結であるという』 と載ってましたので 『(X,T)を位相空間とする。 ∀G1,G2∈T、X≠G1∪G2,G1∩G2=φ の時、Xは連結であるという』 が連結の定義かと思います。 よってこれからXの部分集合での連結の定義は 『(X,T)を位相空間とする。 φ≠A⊂Xにおいても位相空間がとれ、その位相をTaとすると ∀G1,G2∈Ta、A≠G1∪G2,G1∩G2=φ の時、Aは連結であるという』 だと思います。 間違ってましたらご指摘ください。 また、Hausdorff空間の定義は 『位相空間Xとし、X∋∀x,y:distinctにおいて X⊃∃Ux,Uy:近傍 such that x∈Ux,y∈Uy,Ux∩Uy=φ の時、XはHausdorff空間をなす』 だと思います。 Xを位相空間とし、φ≠A,B,C⊂X(但し、A⊂B⊂CでAはBの真部分集合でBはCの真部分集合)とする。 このとき、 「AとCが連結ならばBは連結になる」が偽。 と 「AとCがHausdorffならばBもHausdorffになる」が偽 を示したいのですが それぞれの反例として何が挙げれますでしょうか?

  • Euclid空間が単連結であることについて

    基本群について質問です. n次元Euclid空間R^nが単連結であることを示したいのですが,そのためには (i)R^nが弧状連結 (ii)基本群Π(R^n)={e} を示せばいいのですよね. (i)はほぼ明らかなのでいいのですが, (ii)がちょっとよくわかりません. これを示すためにまず,以下の命題を示しました. X,Y:位相空間で,x∈X, y∈Yとする.kのとき, Π(X×Y,(x,y))≒Π(X,x)×Π(Y,y) (≒は同型を意味) これを用いると Π(R^n)=Π(R×R×…×R)≒Π(R)×Π(R)×…×Π(R) が成り立ちます. 一方,x∈Rを固定したとき,xを基点とするR上の曲線は 全てこの一点にホモトピックであることから, Π(R)={e} よって, Π(R^n)≒{e}×{e}×…{e}={e} となったのですが,これはΠ(R^n)が単位群と"同型"なのであって, Π(R^n)={e}ではないですよね? 示したい(ii)はΠ(R^n)={e}だと思うのですが,どこがおかしかったのでしょうか? ご教授お願いしいたします.

  • 幾何学 弧状連結について

    つぎの空間X が弧状連結であることを示したいのですが、 (X,OX) が弧状連結であるとは,任意のx, y ∈ X に対して, ある連続写像c : [0, 1] → X が存在して, c(0) = x, c(1) = y が成り立つことですよね。 これを使って、解けばいいんでしょうか? 1. X = Sn = {a ∈ Rn+1| ∥a∥ = 1} ⊂ Rn+1 2. f : Rn → Rm,m ≥ 2 を連続関数としたときX = {a ∈ Rn|f(a) ̸= 0} 教えていただけると助かります。

  • 重積分の問題です。

    以下の問題の回答をお願いします。 3次元空間上の領域K={(x, y, z)∈R^3|x^2+y^2=1, x>=0, y>=0, 0<=z<=√2}及び平面L={(x, y, z)∈R^3|x+y-z=0}について考える。ここで、Rは実数全体の集合を表す。 領域Kの中で平面Lとxy平面に挟まれた領域の体積Vを求めよ。 積分範囲がイメージしずらいので、うまく図示する方法などあれば教えて頂きたいです。。。