円錐容器問題の解答と解説

このQ&Aのポイント
  • 円錐容器問題の解答と解説を提供します。
  • 質問文章で述べられた円錐容器の問題に対する解答をまとめました。
  • 円錐容器の中の水の圧力や回転による水面の形、こぼれた水の体積などについて説明します。
回答を見る
  • ベストアンサー

簡単な円錐容器の問題

現在流体力学の演習問題に取り組んでいるのですが答えが付いていなくて正解かわかりません。どうか正解かどうか教えてください。 問題  半径a,高さhの円錐容器を密度ρの水で満たす。重力加速度をg、水面における大気圧をPoとする。円錐頂点の座標を頂点とする円筒座標系(r,θ,z)を用いて以下の問いに答えよ。ただし表面張力は無視してよい。 (1)円錐容器が満水の時水中の点(r,θ,z)での圧力P1は? 次に、この円錐容器内の水をz軸まわりに角速度Ωで回転させる。 (2)水面の形を表す関数Zo=Zo(r,θ,z)を求め、こぼれた水の体積V1を求めよ。 (3)円錐容器の側壁面上の点(az/h,θ,z)での圧力P2は? 私の解答  (1)P1-Po=ρg(h-z)よりP1=ρg(h-z)+Po (2)遠心力と重力の関係から dz/dr=mrΩ^2/mgより         z=rΩ^2/2g         よってV1=π∫r^2dz=gz^2/Ω^2     ここでz=rΩ^2/2gを上式に代入してr=aとおくと         V1=Ω^2h^4/(4g) (3)ベルヌーイの定理より        P1/(ρg)+h=P2/(ρg)+z+u^2/(2g) ここで速度uはu=Ωr=Ωaz/hを代入して     P2=P1+(h-z)ρg-Ω^2a^2z^2/(2gh)         

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

答がついていないとは、不親切な演習問題だなぁ。 では! といいながら指針だけですが・・・ (1)はOKです。で、(2)からがおかしくなっていますね。dz/dr の方程式を解くのに、積分定数を忘れています。r=a にて z=h でなければなりません。これを考慮すると、水面形状を表す式は、 (A) h-z=Ω^2/g・(a^2-r^2) となるはずです。次に、こぼれる水の体積は、dzの積分ではないですね。(A)式で表される’へこみ量’(h-z)に2πrdrをかけて、0→a までの積分ですね。結果はΩ^2・a^4/2g となるはずです。 (3)は、これは’流れ’ではないので、ベルヌーイの定理を使う問題ではありません。これは、「等圧面」を考える問題です。 (A)式が”表面”の等圧面を与えますが、積分定数の取り方次第で、この式は”等圧面の群”を示しています。これと、(1)の結果を用いれば、(3)が求まるはずですよ。

plmkoplmko
質問者

お礼

なるほど!どうもありがとうございました。

関連するQ&A

  • 水面に浮く容器の問題

    次の問題の(5)がわかりません。どうか教えてください。また途中経過も間違っているかもしれないので間違いがありましたらご指摘ください。 問題   下図のように大気圧Paが作用する水面に、上部が開放されている直径Dの円筒形の容器が深さ h_1だけ沈められて固定されている。容器の高さはHで、その底部には栓を介して内径dの曲がり  管が接続されている。このとき以下の諸量を求めなさい。ただし水の密度はρ、重力加速度はgと する。体積密度はρに比べて無視できるほど小さいとし、全ての損失は無視してよい。 (1)栓をしているとき容器に作用する浮力を求めなさい。 (2)栓をとると、曲がり管から水が噴出する。栓をとった直後の流速uを求めなさい。曲がり管の先端  は容器の底面からh_2だけ深い位置とする。 (3)栓をとったままにしておくと容器内に水がたまり始める。容器内の水の体積は水平を保つとし    て、その底面から高さを時間の関数h(t)で表わすとき、容器内の水の体積はπD^2h(t)/4と書け  る。一方、その時の曲がり管からの水の噴流速度u(t)は次式で与えられる。        u(t)=√(2g(h_1-h(t))   容器内の水の体積とu(t)の関係を表す微分方程式を示しなさい。 (4)栓をとったままにしておくとh(t)は容器の外の水面と同じ位置まで上昇して静止する。前門の微  分方程式を解くことにより、栓をとってから水面が静止するまでの所要時間を求めよ。 (5)栓をとったまま容器を図の左側に一定速度Uで水平に走行させると、曲がり管を通じて水がさら  に容器の中に入り込む。このとき容器の上部から水が溢れないための速度Uの条件を求めよ。 _________________________________________ (自分の答え) (1)アルキメデスの定理より       ρVg=ρDHg (2)曲がり管の下端の位置と容器の底の位置でベルヌーイの定理を適用すると      u^2/2g=h_2 u=√(2gh_2) (3)微小体積dVが微小時間dtの間に増える体積変化と水が容器に流入する速度は等しいので       dV/dt=u(t)       {(πD^2)/4}*dh/dt=√(2g(h_1-h)) (4)上の式を積分して       -2√(h_1-h)={4√(2g)}/(πD^2)+C  ここでt=0のときh=0より               -2√h_1=C       -2√(h_1-h)={4√(2g)}/(πD^2)-2√h_1   栓を取ってから水面が静止するまでの時間はh=h_1を代入することにより求まる。             t={(πD^2)/2}*√(h_1/2g) (5) わかりません

  • 円錐の問題なんですが

    底面の半径がr、高さがhの円錐の円錐がある、表面積をS、体積をVとすると Sを一定に保ちながらVを最大にする、最大になったときのh/rの値を求めよ という問題なのですが、 式をたてたところ、S=3V/h(1+(√πh^3/3V+1))(中のカッコ内全てルートの中です) となり、ここでどうにもならなくなっちゃいました。 式が間違っているのでしょうか?それともこの式から先があるのでしょうか? 教えて下さい 宜しくお願いします。

  • 円錐の慣性モーメントを求めると・・・

    円錐の慣性モーメントを求めると・・・ どんな座標系で求めても一致するはずなのですがデカルト座標で計算したら正解とは異なる結果がでてしまいました。 自分でデカルト座標で計算したものを書きますのでどこが間違ってるのか指摘してください。 円錐 高さh 底面の半径 Rとして底面にx、y座標、底面積の中心から頂点へ向かうを軸をz座標とすると I=∬ρ(x^2 + y^2)dV=∬∫ρ(x^2 + y^2)dxdydz これをまずxについて-R(z-h)/h~R(z-h)/hまで積分する =2ρ∬[1/3x^3 + xy^2]dydz 範囲x=0~R(z-h)/h =2ρ∬1/3{R(z-h)/h}^3 + {R(z-h)/h}y^2dydz 次にyについて同様に-R(z-h)/h~R(z-h)/hまで積分する =4ρ∫[1/3{R(z-h)/h}^3 y+ 1/3{R(z-h)/h}y^3]dz 範囲y=0~R(z-h)/h =4ρ∫1/3{R(z-h)/h}^4+ 1/3{R(z-h)/h}y^4dz =4ρ∫2/3{R(z-h)/h}^4dz 最後にzについて0~hで積分すると =4ρ[2/3{R(z-h)/h}^4] =8/15ρR^4h となり正しい慣性モーメントπ/10ρR^4hとは異なってしまいます。 この式変形どこが間違ってますでしょうか?積分計算のやり方が間違ってるのかなぁ( ̄ー ̄?)それとも範囲のとりかたか。。

  • 微分、球と円錐の体積の最小値の問題

    問:頂点がz軸上にあり、底面がxy平面上の原点を中心とする円である直円錐がある。この円錐の側面が原点を中心とする半径1の球に接しているとき、この円錐の体積の最小値を求めよ。 答:(√3)π/2 問題集の解説: 円錐の底面の半径をr,高さをhとおくと、側面が半径1の球と接するから、{√(r*r-h*h)}=rh ・・・(1) より    r*r=(h*h)/(h*h-1) (1<h) 体積をVとおくと  V=(π*r*r*h)/3=(π*h*h*h)/3(h*h-1) であるから (π/3)*(1/V)=(1/h)-(1/h*h*h) f(x)=x-x*x*x (0<x<1)・・・(2)の増減を調べると、 f(x)は0<x<1で正の値をとり、x=1/√3 のとき最大値(2√3)/9をとるからVは、h=√3のとき最小値をとる。 質問: 1.何故、(1)が成り立つのでしょうか? 2.(2)が何を表しているのかがよくわかりません。(2)以降よくわからないので、解説お願いします。

  • 直円錐形の体積などを求める問題です。 順を追って説明をお願いします。

    閲覧ありがとうございます。 半径rの円形の紙から扇形を切り取って、直円錐形の容器を作り、その容器を最大にしたい。 切り取る扇形の中心角をθとするとき、次の問いに答えよ。 (1)直円錐形の容器の体積Vをr、θの式で表せ。また、θの変域を求めよ。 (2)Vの最大値を求めよ。また、そのときのθの値を求めよ。 どうか、説明をお願いします。

  • 全微分方程式の変数分離

    斉次全微分方程式 P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0 をzが変数分離された式 P'(u,v)du+Q'(u,v)dv+dz/z=0 となることを示したいのですが、 まずx=uz,y=vzと置くと dx/dz=z*du/dz+u dy/dz=z*dv/dz+v となりますよね。 これを代入して色々やっているのですが、 どうやっても目的の式にもっていくことが出来ません…。 どなたかやりかただけでもお願いします。

  • 円錐容器のケプラー・円運動

    問題文 「頂角2θの円錐状の容器があります。容器は地面に垂直に設置され、内側に大きさの無視できる質量mの昇給が、容器のそこにある小さな穴を通して、質量Mのおもりとひもで結ばれています。小球は穴からLの距離を保ち、容器内側の滑らかな斜面上を速さvで等速円運動をしています。この小球が円運動をしている最中に、小球が糸から外れました。この後の運動を、水平方向成分Uとこれに垂直な母線方向成分Vに分解すると、穴から小球までの距離とUとの積が一定になることが分かっています。さて、小球は、斜面を上がり最高到達点に達した後、下降して、先ほどの距離Lに戻ってきました。このときのUとVをv、m、M、θ、Lのうち必要なものを用いて表しなさい。」 という問題なのですが、何を使って計算をしていけばいいのか方針が立ちません!! ケプラーの第2法則や、エネルギー保存などを使うのでしょうか? 教えてください。

  • 速度と加速度

    頂角60度の円錐形を下向きにx軸に対して鉛直に置く。 この容器に一定の割合a(m^3/秒)で水を入れていき、水面の上昇をz(m)とする。 (1)水面の高さをz(m)としたとき、水の体積を求めよ。 これはV=(1/9)πz^3と求まりました。 (2)水面の上昇速度をk(m/秒),容器に入った水の体積をV(m^3)を時間t(秒)で微分した量dV/dtをzとkを用いて表せ。 (*微分するとき、zが時間tの関数であることに注意せよ) (3)水面の高さがh(m)に達したとき水面の上昇速度k(m/秒)をaとhを用いて表せ。 (2)と(3)がどうも答えが合いません; どのように解けばいいのでしょうか? 答え・・ (2) (1/3)πkz^2 (3) 3a/πh^2

  • 円形の紙から扇形を切りとって円錐を作り、円錐の体積

    円形の紙から扇形を切りとって円錐を作り、円錐の体積を最大にしたい。もとの円の半径をa、扇形の中心角をθ(ラジアン)とするとき、以下の問に答えよ。 1.円錐の底面の半径rをa、θで表わせ。 2.円錐の高さhをa、θの式で表わせ。 3.円錐の体積V(=1/3πr^2h)をa、θの式で表わせ。 4.Vを最大にするθを求めよ。 5.4で求めたθは度数法ではおおよそ何度か。√8/3≒1.633を使って計算せよ。 長めの問題ですがお願いします。

  • 幾何学の問題です。

    点Po (xo, yo, zo)を通り、方向ベクトルが u=(u_1, v_1, w_1) 及び v=(u_2, v_2, w_2) (ベクトルuとvは一次独立)である直線のいずれにも垂直な直線の方程式を求めよ。 よろしくおねがいします。