• 締切済み

幾何学の問題です。

点Po (xo, yo, zo)を通り、方向ベクトルが u=(u_1, v_1, w_1) 及び v=(u_2, v_2, w_2) (ベクトルuとvは一次独立)である直線のいずれにも垂直な直線の方程式を求めよ。 よろしくおねがいします。

みんなの回答

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

問題の条件に沿って、素直に… 求める直線の方向ベクトルのひとつを (a,b,c) と置くと、 垂直の条件から、au1+bv1+cw1 = au2+bv2+cw2 = 0 …[1] である。 連立一次方程式を解くと、三元二連立から a,b,c の比が決まり、 a : b : c = v1w2-v2w1 : w1u2-w2u1 : u1v2-u2v1. よって直線は、パラメータ表示で (x,y,z) = (x0,y0,z0) + t(v1w2-v2w1,w1u2-w2u1,u1v2-u2v1). パラメータ t を消去して、方程式で (x-x0)/(v1w2-v2w1) = (y-y0)/(w1u2-w2u1) = (z-z0)/(u1v2-u2v1) と書ける。 [1] を満たす (a,b,c) には、(u1,v1,w1) と (u2,v2,w2) との 「外積」という名前が付いている。その求め方は、上記のとおり。

  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.1

u,vに垂直な方向ベクトルはベクトル積u×vで得られる。 このことから 求める直線上の点の座標を(x,y,z)とおくと、媒介変数をt使った垂直な直線の方程式は (x,y,z) =(xo, yo, zo)+t(u1, v1, w1)×(u2, v2, w2) =(xo+t(v1w2-v2w1),yo+t(u2w1-u1w2),zo+t(u1v2-u2v1)) となります。 媒介変数tを使わない直線の方程式に直せば (x-xo)/(v1w2-v2w1)=(y-yo)/(u2w1-u1w2)=(z-zo)/(u1v2-u2v1) となります。

関連するQ&A

  • 幾何の質問です。

    点Po (xo, yo, zo)を通り、方向ベクトルが u=(u1, v1, w1) 及び v=(u2, v2, w2) (ベクトルuとvは一次独立)である直線のいずれにも垂直な直線の方程式を求めよ。 が分かりません。 よろしくお願いします。

  • 空間ベクトルと線形独立の条件?

    ベクトルの成分の条件がわからないので質問します。 uべクトルを→uと書きます。また内積の記号は・を使います。お願いします。 xyz空間の点Pを通り、2つの空間ベクトル→u,→vに直交する直線を求めよ。 解答、P(a_1,a_2,a_3)、→u(u_1,u_2,u_3)、→v(v_1,v_2,v_3)としましょう。求める直線の方向ベクトル、つまり直線と同じ向きを向いたベクトルの1つを、 →w(w_1,w_2,w_3)とおきます。すると→wと→u、→vと直交するので、 →w・→u=→w・→v=0が成り立ちます。これを成分で表すと、 w_1u_1+w_2u_2+w_3u_3=0・・・(1) w_1v_1+w_2v_2+w_3v_3=0・・・(2)ここからがわからないところです。 いまu_1v_2-u_2v_1≠0が成り立つとしましょう。これは平面ベクトルで →u(u_1,u_2)、→v(v_1,v_2)が線形独立であるための必要十分条件なので、空間ベクトルでつかっていいとは思えません。本では、すると(1)*v_2-(2)*u_2を計算して、w_1=-(u_3v_2-u2v_3)*w_3/(u_1v_2-u_2v_1)。同様に(1)*v_1-(2)*u_1より w_2=-(u_3v_1-u1v_3)*w_3/(u_2v_1-u_1v_2)がえられ、そこで、w_3=u_1v_2-u_2v_1とすると、 →w=(u_2v_3-u_3v_2,u_3v_1-u_1v_3,u_1v_2-u_2v_1)と方向ベクトルを求めています。 いまu_1v_2-u_2v_1≠0が成り立つとしましょう。なぜこのような条件がつけれるのか説明してください。お願いします。

  • 幾何学の問題です。

    空間において、方向比が u1: v1: w1 である直線l (エル)と方向比が u2: v2: w2 である直線mについて次の(1), (2)を示しなさい。 (1) l(エル)とm が垂直である必要十分条件は u1u2 + v1v2 + w1w2 = 0 である。 (2) l(エル)とm が平行であるための必要十分条件は u1: v1: w1 =u2: v2: w2 である。 よくわかりません。よろしくおねがいします。

  • 幾何学の問題

    幾何学の問題がわからなくて困っています。 1. 点(3,2,1)を通り、数ベクトル(0,1,2)で表せる幾何ベクトルに垂直な平面の方程式 2. 1の方程式はどの座標軸に平行か 3. 点(1,2,3)を通り、x3軸に垂直な平面の方程式を求めよ 4. 点(2,1,3)を通り、x2x3平面に平行な平面の方程式を求めよ 解説・解答お願いします!!(><)

  • 4次元空間上での平面の式

    任意の点を(x,y,z,u)とした4次元空間で (1)3次元の立体を表す式は ax+by+cz+du=e でいいですか? (2)2次元の平面を表す式は一般にどのような形になりますか? 上記のことに疑問を持った理由。 2次元空間で1次元の直線を表す式は、一般にax+by=cとなる。 これは、2点(x,y),(xo,yo)を通り、方向ベクトルが(a',b')で媒介変数tとして x=a't+xo y=b't+yo と書くこともできる。 3次元空間で2次元の平面を表す式は、一般にax+by+cz=d となる。 これは、 平面上の2点(x,y,z)と(xo,yo,zo)を結ぶベクトルとこの平面に垂直な直線の方向ベクトル(a,b,c)の内積が0であるという条件より導かれる。 実際に計算すると a(x-xo)+b(y-yo)+c(z-zo)=0 ax+by+cz=axo+byo+czo になり、ax+by+cz=dという形と同値であることが確認できる。 【別な考え】 3次元空間内の平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo)、Q(x1,y1,z1)、R(x2,y2,z2) とする。この平面上の任意の点X(x,y,z)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo) PQ↑=(a,b,c) PR↑=(a',b'c') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) という書き方も平面を表す式である。 実際に(1)と(2)から未知数t,sについてx,yの式で表すことができるので、それを(3)式に代入すれば、(1)(2)(3)式は、一つの式 a"x+b"y+c"z=d'という形になる。 直線を表す式は、媒介変数tを使って x=at+xo y=bt+yo z=ct+zo または、 (x-xo)/a=(y-yo)/b=(z-zo)/c=t となる。 4次元空間で同じように、 直線や平面や立体を考えてみた。 2次元では、(1,0)と(0,1)が直交の基底ベクトル。 3次元では、(1,0,0)と(0,1,0)と(0,0,1)が直交の基底ベクトル。 したがって、 4次元では、(1,0,0,0)と(0,1,0,0)と(0,0,1,0)と(0,0,0,1)が直交の基底ベクトル。 4次元空間では、点は4つの成分で表される。 4次元空間での直線について。 直線は2点が与えられば書ける。 2点(x,y,z,u)と(xo,yo,zo,uo)を通り、その直線の方向ベクトルが(a,b,c,d)だとしたら、媒介変数tを使って、 x=at+xo y=bt+yo z=ct+zo u=dt+uo となって (x-xo)/a=(y-yo)/b=(z-zo)/c=(u-uo)/d=t 次に4次元空間での3次元立体について。 2次元空間では、それより一つ次数が低い1次元の直線は一つの式 ax+by=c で与えられた。 3次元空間では、それより一つ次数の低い2次元の平面は、一つ式 ax+by+cz=d で表さられた。 したがって、4次元空間では、それより一つ次数の低い3次元の立体は、 ax+by+cz+du=e で表されるだろう。 【別な考え】 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する立体は一つしかない。なぜなら、4次元空間での基底ベクトルは4つで空間(立体)は3つの基底ベクトルで決定されて、残り一つが残っているからだ。 立体上の2点(x,y,z,u)と(xo,yo,zo,uo)を結ぶベクトルとこの立体に垂直な直線の方向ベクトル(a,b,c,d)の内積が0であるという条件で計算すると a(x-xo)+b(y-yo)+c(z-zo)+d(u-uo)= 0 ax+by+cz+du=axo+byo+czo+duo になり、ax+by+cz+du=eという形になる。 2次元の平面はどうだろうか? (ここからが本題) 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する平面は、2つあるはずだ。 なぜなら、4次元空間での基底ベクトルは4つで平面は2つの基底ベクトルで決定されて、残り2つが残っていて、それはこの平面に直交するように選べるからだ。 平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo,uo)、Q(x1,y1,z1,u1)、R(x2,y2,z2,u2)、 とする。この平面上の任意の点X(x,y,z,u)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo,uo) PQ↑=(a,b,c,d) PR↑=(a',b',c',d') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) u=uo+dt+d's.....(4) という書き方も平面を表す式である。 (1)と(2)を連立して、未知数t,sについてx,yの式で表すことができるので、それを(3)式と(4)式代入すれば、(1)(2)(3)(4)式は、2つの式 a"x+b"y+c"z+d"u=e' a"'x+b"'y+c"'z+d"'u=e" になる。 この2つの式からuを消去すれば、結局、 Ax+By+Cz=D という形になる。 zを消去すれば、 Ax+By+Cu=D yを消去すれば、 Ax+Bu+Cz=D xを消去すれば、 Au+By+Cz=D

  • 直線の方程式 方向ベクトル 法線ベクトル

    点A(-3,-1)を通り、直線4x+2y+1=0に平行な直線および垂直な直線の方程式を求めてください。 (法線ベクトルもしくは方向ベクトルを使ったやり方を教えてください) よろしくお願いします。

  • 媒介変数方程式について

    点(0,7)を通り、方向ベクトルv=(0,1)の直線の媒介変数方程式はどうなるでしょうか? また方向ベクトルのどちらかが0であるとき、媒介変数方程式はX=0と書くか、Xはなしと書くのではどちらがよろしいでしょうか? 回答よろしくお願いします。

  • 解説してください

    平行6面体の体積を ±(v×w)・uとあらわせることを証明する 問題で以下のように回答をいただいたのですが1部分分かりません。 教えてください。 ーもらった解答ー vとwのなす角度をφとするとき 外積の大きさは ∥v×w∥=∥v∥×∥w∥×sinφ 外積のベクトルはvに垂直で、かつ、wに垂直なベクトルとなる。すなわち、vとwで作る平面に垂直となるベクトルである。 ベクトルuと(vとwで作る平面)の角度をθとする uと(v×w)の角度は90度-θ又は90度+θとなる。 角度が90ーθのときの体積は以下である。 体積=∥S∥×∥u∥sin(90-Θ) ←ここの部分が分からないです。   =∥S∥×∥u∥cosθ   =(v×w)・u となる。 角度が90+θのときの体積は以下である。 体積=S×∥u∥sin(90+Θ)   =S×∥u∥(-cosθ)   =-(v×w)・u となる。 体積は±(v×w)・u となる。 途中矢印を入れさせてもらった部分がなぜそれを代入するか分かりません。 その代入ではhではなくvとwで構成される平面に平行になる部分の長さになってしまう と思うのですが解説していただけますか?

  • 数学の問題の解法を教えてください。

    1.Oを原点とする空間内に3点A(-1,1,1)とB(1,-1,1)とC(1,1,-1)がある。 (1)ベクトルABおよびベクトルACに垂直で大きさ1のベクトルeを求めよ。 (2)△ABCを1つの面に持つ正四面体のほかの頂点Eの座標を求めよ。 (3)正四面体EABCの体積を求めよ。 2 点Qが円x^2+y^2-2x-4y+1=0の上を動くとき、点A(3,6)と点Qを結ぶ線分AQの中点Pの軌跡の方程式を求めよ。 3 放物線y=2x^2+4tx+4tの頂点は、tが正の値をとって変化するとき、どのような曲線を描くか。その曲線の方程式を求めよ。 4 4点(2,0,0)(0,1,1)(1,1,0)(-1,2,1)が同一平面q1の上にあるが、このとき方程式2x+3y-2z=1で表される平面q2とq1の共有部分の直線の方程式を求めよ。また、この直線に平行で大きさ√5のベクトルvを求めよ。 5 平面ベクトルの列 v0,v1,v2,・・・・・・ は任意の自然数nに対し vn=vn-1+v1-V0を満たす。v0=(1,0) v1=(0,1)のとき、v0とvnのなす角度が135°より小さいことを示せ。 どれか一問でも構いませんので、お時間の空いている方、どうかよろしくお願いします。

  • 幾何の質問です。

    幾何学で分からない問題があります。教えてください。 「平面における直線l(エル)の方程式は、 λx + μy = p λ^2 + μ^2 =1, p ≧0 の形(Hesse の標準形)に表せる。 この時、(λ、μ)は l (エル)に垂直な方向ベクトルであり、pは原点からl(エル)に下ろした、垂線の長さ(原点と垂線の足との距離) であることを示しなさい。