• ベストアンサー

数列{a_n}が収束する条件

収束すれば、a_nはnが無限大に近づくにつれて、0に近づきますが、その逆(a_n→0 (n→∞)をみたすa_nは収束する)というのはなりたつのでしょうか。 そうでなければ反例を教えてください。 

質問者が選んだベストアンサー

  • ベストアンサー
  • myuki1232
  • ベストアンサー率57% (97/170)
回答No.1

> 収束すれば、a_nはnが無限大に近づくにつれて、0に近づきますが ここがまず違いますが、「0」を「ある有限な値」に置き換えれば成り立ちます。収束という用語の定義ですから、当然後者も成り立ちます。

nemuine8
質問者

お礼

ごめんなさい 質問がちょっと間違えてました。 正しくは 「lim{n→∞}Σ{k=1~n}a_k が収束すれば a_nはnが無限大に近づくにつれて、0に近づきますが」でした。 訂正して投稿しなおします。 申し訳ありませんでした

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 数列の和が収束する条件

    lim{n→∞}Σ{k=1~n}a_k が有限値に収束すれば a_nはnが無限大に近づくにつれて0に近づきますが、a_n→0 (n→∞)であれば必ずlim{n→∞}Σ{k=1~n}a_kは有限値に収束しますか?収束しないとしたら反例をお願いします・ (一度投稿したのですが、手違いがあったため再投稿です)

  • 数列の収束条件

    (似たような質問を昨日させてもらいましたが、違う質問です) 数列{a_n}がある有限値に収束するとして、a_(n+1)-a_n=d_nとしたとき、数列{d_n}は0に収束しますが、数列{d_n}が0に収束すれば、{a_n}はある有限値に収束すると結論付けてもいいのでしょうか?

  • 数Σ級na_nが収束するならΣa_nは収束することを示す。

    級数Σ級na_nが収束するならΣa_nは収束することを示す問題で、行き詰っています! 以下は、私が考えた証明です。 Σna_nが収束するならば、lim(na_n)=0 ⇔∀ε>0に対して、適当な番号Nがあって、n≧N⇒|na_n|<ε |na_n|=n|a_n|より、 n≧N⇒|a_n|<ε/n ∴lim(a_n)=0 ・・というところまで考えました。 その後、どうすればΣa_nも収束すると言えるのかがわかりません。 どなたか、お力を貸してください! ・・というか、この証明自体、最初から間違っていたり、なんてことがあったりしますか? 回答よろしくお願いします。

  • (a_n)^2の和が収束する時の(a_n)/nの和

    Σ{n+1~∞}((a_n)^2)が収束するときΣ{n+1~∞}((a_n)/n)が収束するかどうかという問題なんですが、まったく見当もつかず。。。ちょっとでもいいのでヒントをだしていただけませんか?

  • Σ[n=0..∞]a_nが収束するならΣ[n=0..∞](-1)^na_nも収束?

    こんにちは。 Σ[n=0..∞]a_nが収束するならΣ[n=0..∞](-1)^na_nも収束。 という真偽判定の問題なのです。 真だと思うのですがどのようにして証明できますでしょうか?

  • 数列が収束するかの証明問題

    数列{a_n}{b_n}を写真のように定める。 (a_n,b_nはすべて正数とする) a_n,b_nが同じ値に収束することをしめしなさいという問題なのですが、 流れとしては、 1) a_n=b_nならば代入すれば、a_(n+1)=b_(n+1) 数学的帰納法(?)で数列{a_n}{b_n}は同じ値に収束する 2) a_n>b_nとして、 b_n=√(b_n*b_n)<√(a_n*b_n)=b_(n+1) a_n=2(a_n)^2/2(a_n)>2a_n*b_n/a_(n)+b_n=a_(n+1) (ここは計算すると、不等号が成り立ちますが、省略します。) またa_(n+1)<b_(n+1) (0<(a_n-b_n)^2から計算すれば出ますので省略します) これをまとめてb_n<a_(n+1)<b_(n+1)<a_nとなる 3) 次にa_n<b_nのときは 上記と同じような計算で b_(n+1)<b_n a(n+1)>a_n a_(n+1)<b_(n+1)がえられる。 2)3)の結果を合わせて a_n>b_nの場合は、a_(n+1)<b_(n+1)に、 a_n<b_nの場合はa_n<a_(n+1)<b_(n+1)<b_n…(1)となる。 nが2以上で(1)が無限に繰り返されていき、a_2<a_3<a_4<a_5<...<b_5<b_4<b_3<b_2が成立するため{a_n}{b_n}はともに有界であり、n=2以上で {a_n}は単調増加、{b_n}は単調減少であるとわかる。よってともに収束する。 数列{a_n}の収束値をA、数列{b_n}の収束値をBとして 与式に代入するとA=Bがえられ、数列{a_n}b_n}は同じ値に収束することがわかる。 といった感じ大まかにはあってますか?

  • 数列の収束

    次のような問題です。 a_1=1,a_n+1=1/(1+a_n)の漸化式で定まる数列を考える。 このとき数列a_nが収束することを示せ。 こんな問題なのですが、分かりそうでわかりません。 実際、順に書き並べていくと分子・分母がフィボナッチ数列になり一般項は求められないこともないですが、複雑すぎてここから収束性を示すのは難しいと思います。 また、この数列は有界なことは分かりましたが単調数列じゃないので収束性は示せませんし・・・ だれか分かるかたいましたら解答お願いします。

  • 収束しない数列でチェザロ総和みたいなものを考えると

    異なる正の数a,bに対し、 数列a[n]:a,b,a,b,a,b,… は収束しないですが、 S_1[n]=(a[1]+a[2]+…+a[n])/n としたとき、 lim[n→∞]S_1[n]=(a+b)/2 と収束し、そのようなものをチェザロ総和といいます。 では、 S_2[n]=√[(a[1]*a[2]+a[1]*a[3]+…+a[1]a[n]+a[2]a[3]+…+a[n-1]a[n])/{n(n-1)/2}] としたとき、 lim[n→∞]S_2[n] はどうなるのでしょうか? さらに、lim[n→∞]S_3[n]、…、や、それらの収束の相互関係(大小関係や収束のしやすさ)などについて、なにかご存知のことがありましたら教えていただけないでしょうか?

  • 数列の収束、有界など

    数列a(n)=1+1/1+1/2!+1/3!…+1/n!について (1){a(n)}は単調増加を示せ。  解: a(n+1)-a(n)=1/(n+1)!-1/n!>0 ⇒a(n)<a(n+1) (2)上に有界を示せ。 (3)収束することを示せ。 (1)は自力で解けたのですが、(2)(3)が分かりません。 申し訳ないのですが、分かる方は教えて下さい。よろしくお願いします。

  • 数列の収束

    数列の問題なのですが a_(n+1)=√2^(a_n) という数列で (1) a_0=2,a_0=4の時,2,4に収束することを示せ。 (2) a_0<2の時,lim(n→∞)a_n=2を示せ。 (3) a_0>4の時,lim(n→∞)a_n=∞を示せ (4) 2<a_0<4のとき,lim(n→∞)a_n=2を示せ。 という問題なのですが,(1)以外がどう手を付けて良いのかわかりません>< どなたか解説お願いします。

白紙が出てくる
このQ&Aのポイント
  • 印刷されていない白紙が突然出てくる原因と解決方法について相談したい
  • お使いの環境や接続方法、関連するソフト・アプリについて教えてください
  • 使用している製品はDCP-J587N/DCP-J987で、Windows10で無線LANに接続しています
回答を見る