ベストアンサー 線形変換 ユークリッド変換 2011/10/17 23:48 線形変換 ユークリッド変換 線形変換とユークリッド変換について質問させて下さい。 いろいろ調べていると、添付画像のようなベン図?を見つけました。 線形変換は拡大・縮小、鏡映、剪断、回転の変換で、ユークリッド変換は平行移動と回転と表されています。ユークリッド変換は平行移動と回転だけなのですか? 線形変換は原点が存在すると思いますが、ユークリッド変換は原点が存在しないのでしょうか? ユークリッド変換の対象となる空間はユークリッド空間だと思いますが、ユークリッド空間では 拡大・縮小等を定義できないのでしょうか? 以上、多々理解できていないのでご回答よろしくお願い致します。 画像を拡大する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー Tacosan ベストアンサー率23% (3656/15482) 2011/10/18 00:00 回答No.1 とりあえず「ユークリッド変換」がどのような条件を満たすものなのかを調べたら? 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 線形変換 アフィン変換 ユークリッド変換 線形変換、アフィン変換、ユークリッド変換について教えて下さい。 線形変換: 回転、鏡映、剪断、拡大・縮小 アフィン変換: 線形変換+平行移動 ユークリッド変換 回転、鏡映、平行移動 と教えて頂きました。 ここで、疑問なのですが、線形変換,アフィン変換,ユークリッド変換において線形変換だけ平行移動できないということは線形変換は原点を持つが、アフィン変換,ユークリッド変換は原点を持たないという事でしょうか? また、ユークリッド変換はアフィン変換の特殊な場合と教えて頂きました。そして、ユークリッド変換の方がアフィン変換よりも多くの性質を保つとの事なのですがこの点が理解できません。 変換できる項目が少ないほうが多くの性質を保てると言うことなのでしょうか? また、等長変換というものもあるのですがこれはユークリッド変換 と同義でしょうか?ユークリッド変換と何が異なるのでしょうか? 合同変換とは形を変えない変換ですが、線形変換、アフィン変換で拡大・縮小を伴わない場合とユークリッド変換を指していると言う認識で良いでしょうか? 以上、わからなくて困っています。 ご回答何卒、よろしくお願い致します。 ユークリッド空間 ユークリッド変換 ユークリッド空間とはユークリッド変換の対象となる空間であると認識 しています。 ユークリッド変換は、回転、鏡映、平行移動です。 ユークリッド変換は、直交変換+平行移動と説明されたりしますが、 直交変換とはなんでしょうか?直交行列と関係あるのでしょうか? 直交行列は、ある行列Aの転置行列がAの逆行列と等しい行列で ある事は理解できています。 回転行列は直交行列の一つだと認識しています。 線形変換(回転、鏡映、拡大・縮小、剪断)のなかで直交変換に あたるものは回転以外になにがありますでしょうか?鏡映も回転と ほとんど同意なので含まれると考えています。 ユークリッド変換の数学的な定義は調べたのですがわかりませんでした。 ユークリッド変換の数学的な定義を以下のように教えて頂けませんか? ちなみに、 線形変換の定義は、 K上の線形空間V上の変換fで、x,y∈V,a,b∈Kについて常に、 f(ax+by)=af(x)+bf(y)が成り立つもの。 アフィン変換の定義は、 K上のアフィン空間W(線形空間を含む)上の変換fで、x,y∈W,a,b∈Kについてa+b=1のとき、 f(ax+by)=af(x)+bf(y)が成り立たちかつ全単射であるもの。 よく私たちが生活している空間を3次元ユークリッド空間などと呼んだりしますが、 これはなぜでしょうか?ユークリッド空間では、回転と鏡映(対称移動)、平行移動が 定義された空間で私たちが生活している空間とは無関係な気がします・・・ 私たちが生活している空間には、~空間といったような名称があるのですか? 長々と失礼しました。 質問を整理させて頂きます。以下に質問順に番号をふりました。 (1)直交変換とはなんでしょうか? (2)線形変換の中で直交変換であるものはなんでしょうか? (3)ユークリッド変換の定義を教えて貰えないでしょうか? (4)ユークリッド空間と私たちが日常生活している空間は関係あるのでしょうか? 以上、ご回答よろしくお願い致します。 ユークリッド空間 原点 ユークリッド空間にも原点は存在するのでしょうか? ユークリッド変換は平行移動を含むためアフィン変換同様に原点はないと考えています。 線形変換とアフィン変換を対比した場合、スカラー倍の相似中心となる原点 が存在する点が大きな違いかと思いますがユークリッド空間もアフィン空間同様絶対的な原点はないと考えてよいでしょうか? 以上、ご回答よろしくお願い致します。 合同変換と線形性 どうしても、何度読んでも教科書で納得できない部分があります。 n次元のユークリッド空間において、任意の合同変換fから、-f(0)だけ平行移動したものを(要するに原点を固定してるわけですが)合同変換gとした時に、この合同変換が線形性を持っていることを、どうやったら代数学的に説明できますか。ヒントください。とほほ。 次の変換は全て線形変換ですか 1.空間内に任意に与えられたベクトルの方向に平行移動する変換 2.空間内に任意に与えられたベクトルを回転軸とする回転変換 3.空間内に任意に与えられた1点を中心にλ倍拡大縮小する変換 4.これらを任意に合成した変換 線形変換 線形変換 線形代数で、線形写像を勉強しています。 線形変換は例題をいくつかあたり、理解しています。 テキストには、線形変換の項目以下にアフィン変換も記載されているのですが、 アフィン変換(線形変換+平行移動)は線形変換の種類の一つなのでしょうか? 他にもユークリッド変換(直交変換+平行移動)など記載されており、 これも線形変換の一つでしょうか? 直交変換は線形変換の一つだと認識しています。 以上、ご回答よろしくお願い致します。 正則な線形変換について 1.正則な線形変換には、回転、拡大縮小、反転、ずらしの基本4種類およびこれらの組み合わせ(積)がありますが、それ以外にはありませんか。 正則な線形変換は全てこの中の一つと考えて良いのですか。 2.このうち合同なものはどれですか、相似なものはどれですか。 線形写像 空間における次の移動は、正則変換であることを確かめて、その表現行列をもとめよ。 また、逆変換の表現行列も求めよ。 (1)原点Oに関する対称移動 (2)平面;y=xに関する対称移動 (3)平面;z=-xに関する対称移動 (4)原点Oを中心とするk倍の拡大または縮小 やり方がわかりません。 教えてください。 線形変換 正規直交座標系における問題です。 ┌ ┐ │ cosX -sinX│ │-sinX -cosX│ └ ┘ という線形変換についてなのですが、 点A (1, 0) がこれによって移動される点Bは、点Aを原点を中心に半時計方向に角度「 」だけ回転し、座標軸上で「( , )」だけ移動した点である。 の「」の中が埋められません。上の線形変換はこの前にある誘導問題で自分で導いたもので、もしかしたらこれが間違ってしまっているのかもしれません。(一応何度も計算しなおしました) なにぶん答えがないのと、「座標軸上で(, )だけ移動する」という表現が???です。座標上ならまだわかるのですが・・。 アドバイスをお願いします。 相似変換について 線形変換には、回転、拡大縮小、反転、ずらしの4種類がありますが、このうち相似変換となるのはどれですか。 幾何学の証明問題がわかりません 解けない問題があるの教えてください。 直交座標、点(x,y)に変換を行い、x軸に関する鏡映で(x,-y)、 直線x=yに関する鏡映で(y,x)、 原点を中心に90°の回転で(-y,x)、x軸に従う併進鏡映で(x+α,-y),拡大鏡映によって(bx,-by)に移ることを証明せよ。 よろしくお願いします。 アフィン空間 ユークリッド空間 以前から何度も質問させて頂いているのですがドツボにはまりまったく分からなくなって下りますので、再度質問させて下さい。 アフィン空間とユークリッド空間の大きな違いは絶対的な原点があるか否かだと認識しています。 では、アフィン空間とはどのようにして利用されているのでしょうか? ググってみると3DCG、3DCADなどはアフィン変換が利用されているとありました。3DCG、3DCADの空間はアフィン空間なのでしょうか?しかし、3DCADには原点があるように思います・・・ 幼稚な質問で申し訳ないのですがご回答よろしくお願い致します。 幾何学 極座標 極座標で、点(r,θ)に次の変換をほどこすと、角αの回転で、(r,θ+α)に、原点Oに関する点対称で、(r,θ+π)に、始線に関する鏡映で、(r,-θ)に、直線θ=αに関する鏡映で(r,2α-θ)に移ることを証明したいです。どうぞよろしくお願いします。 線形変換を教えてください!! 線形変換を教えてください!! 『原点を通り、ベクトル(sinα,0,cosα)に直交する平面についての折り返しを表す行列を求めよ』という問題があります。 その答えは 『y軸のまわりの角度-αの回転、xy平面についての折り返し、y軸の周りの角度αの回転を続けて行えばよい』となっています。 しかし、問題も答えも、イメージできません。イメージできれば、基底ベクトルの回転から求めれば、計算は簡単だと思うのですが… 普通の人にはこれでイメージできるのでしょうか?それともこのような問題を解くとき、作図やイメージ以外の簡単な方法があるのでしょうか?教えてください。 大学数学「空間とベクトル」の質問です 「空間とベクトル」の問題がわかりません。お分かりの方、解答解説をお願いします。 R1,R2,は平面の回転で、次の合成変換R2・R1はどのような合同変換になるか? (1)原点に関する45°の回転をR1、点P(√2,0)に関する-45°の回転をR2としたとき (2)原点に関する60°の回転をR1、点P( 1,0 )に関する-60°の回転をR2としたとき 解答は (1)ベクトル(√2ー1,1)による平行移動 (2)ベクトル(1/2,√3/2)による平行移動 となっています。 45°と-45°、60°と-60°の合成変換が平行移動になるのはわかるのですが、ベクトルがなぜこうなるのかわかりません。解説よろしくお願いします。 直交変換 等長変換 直交変換とは、回転、鏡映だと認識しているのですが間違いでしょうか? 直交行列と直交変換は関係があるのでしょうか? 直交変換と等長変換はなにが違うのかよくわかりません・・・ 以上、ご回答よろしくお願い致します。 線形変換を教えてください!! 線形変換を教えてください!! 『原点を通り、ベクトル(sinα,0,cosα)に直交する平面についての折り返しを表す行列を求めよ』という問題があります。 その答えは 『y軸のまわりの角度-αの回転、xy平面についての折り返し、y軸の周りの角度αの回転を続けて行えばよい』となっています。 しかし、自分なりに考えてみて 『y軸のまわりの角度αの回転(z軸をベクトル(sinα,0,cosα)に重ねるため)、xy平面についての折り返し、y軸の周りの角度αの回転(z軸をもとに戻すため)』と考えたほうがしっくりきます。当然答えは違ってくるのですが… 考え方に間違いがあるでしょうか? 線形変換の証明と問題 どう証明していいか分からないので、教えてもらいたいです(>_<) (2)のやり方も、教えていただければ、助かります! (1)座標平面上の点を原点回りにθだけ回転する線形変換を考えることにより、 ( cosθ -sinθ) ^n = ( cos nθ -sin nθ) sinθ cosθ sin nθ cos nθ を証明せよ。 (2)行列 (cos π/4 -sin π/4 0) sin π/4 cos π/4 0 0 0 1 で表される線形変換によって、次の図形 平面x+y+z=1はどのような 図形に移されるか? 回答を、ぜひ宜しくお願いします。 同次変換について 前回の質問で同次変換とはどのようなものかおおよそ理解する事が出来ました。 追加質問したのですが、解決できないので新たに再質問させて頂きます。 前回の質問内容:http://okwave.jp/qa/q6934077.html 変換という言葉は理解できました。 同次変換とは、1次元多い行列で表現された変換をさす。 一次元多い理由は、並進を表すため。 数学的に定義される変換は、ユークリッド変換、アフィン変換、射影変換の 3つである。 ユークリッド変換についてよく理解できないので教えてください。 これは線形変換とは異なりますよね。線形変換であれば、並進は含みませんから。 アフィン変換は、線形変換に並進を加えたものだと認識しております。 アフィン変換とユークリッド変換の違いはなんでしょうか? ユークリッド変換の方がアフィン変換より集合的に大きいことはわかるのですが・・・ また同次変換を、 X Y Z 1 と表している記述を良く見ます。 具体例を挙げると、 基準座標系を(x y z 1)、対象座標系(X Y Z 1) と表す。 対象座標系は基準座標系をx軸にθ回転、x軸に3平行移動した ものとする。 X x|1 0 0 3 | Y= y|0 cosθ sinθ 0 | Z z|0 -sinθ cosθ 0 | 1 1|0 0 0 1 | のように表されると思います。 ここで、同次変換を X Y Z W と表すとすると、変換行列の4列目は、どのようにあらわされるのでしょうか? X x|1 0 0 ? | Y= y|0 cosθ sinθ ? | Z z|0 -sinθ cosθ ? | W ?|0 0 0 ? | 以上、申し訳ありませんがご回答よろしくお願い致します。 一般2次曲線の放物線型 4x^2-4xy+y^2-10x-20y=0・・・(1)を標準形になおす問題で、計算手順がわからないので質問します。 (xyの係数)^2-4(x^2の係数)*(y^2の係数)=16-16=0で(1)は放物線であることはわかるのですが、(1)をxについて偏微分したものの方程式=0と、yについて偏微分したものの方程式=0を連立方程式として解こうとすると、 (xyの係数)^2-4(x^2の係数)*(y^2の係数)=0・・・(2)より連立方程式が解を持たないので、(1)の原点を平行移動した方程式が求まりません。 楕円型などでは、(xyの係数)^2-4(x^2の係数)*(y^2の係数)≠0より、与えられた方程式を平行移動した式が求まり、そこから、tan2θ=(xyの係数)/{(x^2の係数)-(y^2の係数)}・・・(3)を満たすθだけ、座標軸の回転(tanθ=1/2のとき、sinθ=1/√5,cosθ=2/√5より原点を平行移動した座標軸をX,Yとし、さらに座標軸をθ回転した座標軸をX',Y'とすると、X=(1/√5)*(2X'-Y')とY=(1/√5)*(X'+2Y')を原点を平行移動した方程式に代入すると、xyを含む項が消える。)した式を求めて答えの方程式をもとめています。 また(1)の座標軸を回転移動した軸をX,Yとすると、(2)より回転移動後のX^2かY^2の係数は0になるということで、(1)における(3)を求めて、tanθ=-1/2よってsinθ=-1/√5,cosθ=2/√5まで求めたのですが、tanθ=-1/2でX^2の項が消えるか、Y^2の項が消えるかどちらかわからないので、計算しようがないです。 どなたか、一般2次曲線の放物線型において、座標軸を平行移動した方程式と、座標軸を回転移動する式を代入する方程式、の求め方を教えてください。お願いします。