• ベストアンサー

三角関数 一般解

R_Earlの回答

  • ベストアンサー
  • R_Earl
  • ベストアンサー率55% (473/849)
回答No.1

> なぜ違うか教えてほしいです。 違くないです。 θ=5/6π+2nπ,7/6π+2nπでもOKです。 -5/6πは-150°、7/6πは210°です。 -150°と210°ってどんな関係にあるでしょうか。 それを考えてみましょう。

kawatakuya
質問者

お礼

確かにそうですね。 表現は違っても同じ角度を指していますね。 理解できました。 ありがとうございました(^O^)

関連するQ&A

  • センター12年 [1]の2三角関数 高校数学(注)

    0<=α<=π、0<=β<=π sinα=cos2β cos2β=cos(π/2-α)の一般解はnを整数として2β=±(π/2-α)+2nπとあったのですが、これが成立するのが分かりません+は成立しそうな気もしますが-が何で成立するんですか?注

  • sinx=sinyの一般解

    整数nを用いて sinx=sinyの一般解 x=πn+(-1)^n・y や cosx=cosyの一般解 x=2πn±y はどのようしてに導かれたものでしょうか? よろしくお願いします。

  • 三角方程式の解の表し方について

    sinx=√3/2の解がx=2nπ+π/3 ,2nπ+2/3πとなる。これを まとめてx=nπ+(-1)^nπ/3(nは整数)とあらわされる。 ヒント nを奇数、偶数に分けてかんがえればよい。 という参考書のせつめいがわかりません。高校1年生です。解説していただければありがたいと思います。

  • 解が三角関数で表される2次方程式

    解が三角関数で表される2次方程式 aを正の定数とし、Θを0<=Θ<πを満たす角とする。このとき、2次方程式2x^2-2(2a-1)x-a=0の2つの解がsinΘ,cosΘであるという。a,sinΘcosΘであるという。 a,sinΘ,cosΘの値をそれぞれ求めよ。 与えられた2次方程式に対し、解と係数の関係からsinΘ+cosΘ=2a-1・・・・(1) sinΘcosΘ=-a/2・・・・・(2) (1)の両辺を2乗すると,sin^2Θ+cos^2Θ=1であるから1+2sinΘcosΘ=(2a-1)^2 これに(2)を代入して整理すると a(4a-3)=0 a>0であるからa=3/4 教えてほしいところ sinΘやcosΘは取り得る範囲が決まっていますよね??? よって、sinΘ+cosΘ=2a-1・・・・(1) sinΘcosΘ=-a/2とおいた時点でaの取り得る範囲が制限されるはずです。 よってa>0という条件に加えてさらにaの取り得る範囲は狭まるはずです。 ふつうの方程式のように解けば当然、そのようなことは考慮に入れていません。ですので、範囲の確認が必要なはず。 なのになぜ、a>0という条件しか確認しないんでしょうか???

  • 一般解

    35x-151y~1 x,yは整数で 一般解を求める問題なのですがよくわからないので教えてください まず 151=35×4+1 …(1) 35=11×3+1  …(2) 11=2×5+1 …(3) これを見つけるのに時間がかかりましたが早く出せるコツはありますか_ そのと (3)から 1=11×3+2 より (2)を代入して =11-(35-11×3)×5 までは計算したのですがよくわかりません おねがいします

  • 三角関数について

    COS60°は整数で表すと1/2ですか? また、COS0°はどうなりますか?

  • 線形代数:解が特殊解+一般解

    現在復習として線形代数をやっているのですが、解が特殊解+一般解になるというものがあまり理解できません。 m×n行列A、n次の列ベクトルx、m次の列ベクトルbからなる Ax=b という方程式があるとします。 この方程式が解を持つならば、その一般解は1つの特殊解x_1と、対応する同次方程式の一般解x_0との和x=x_1+x_0で与えられるという定理があります。 この証明として、Ax_1=b, Ax_0=0とすれば、A(x_1+x_0)=Ax_1+Ax_0=b+0=b; だから、x=x_1+x_0はAx=bの解になる。 これは、証明中では「Ax_0=0とすれば」と書いてあるから成り立つのは理解できますが、定理の中では同次方程式の一般解がx_0=0と限定はしていません。 仮にx_0=0でない場合、例えばrankA=r(r<n)とすると、一般解はx_0=t_(r+1)x_(r+1)+t_(r+2)x_(r+2)+…+t_nx_n (t_(r+1)~t_nは任意の定数) というように、解はx_(r+1)~x_nまでの一次結合になります。 つまり、A(x_1+x_0)=Ax_1+Ax_0=b+x_0(≠0)≠bということになります。 これは、特殊解と一般解の和がこの方程式を満たしていないことになります。 しかし、前に微分方程式なんかを習っていたときも特殊解と一般解の和を答えとして出してた記憶もあるので、成り立たないはずはない・・・?と思いますがまったく納得いきません。 自分の説明が間違っているとは思うので、何か間違っている点がわかる方いましたらご指摘お願いします。 見づらくわかりにくい文章で申し訳ないです・・・。

  • 三角関数

    (2sinθ + cosθ +1)(sinθ + 2cosθ -1)=0 (0≦θ≦π)の解の和を求めよ。 という問題を以下の様に解きましたが間違っていました。正しい解法を教えてください。よろしくお願いいたします。 2sinθ + cosθ +1=0 (1) 又は sinθ + 2cosθ -1=0 (2) である。 (1)(2)より、sin(θ+α)= - 1/√5 , sin(θ+β)=1/√5となる。 (但し、sinα=1/√5,sinβ=2/√5) この時、sinα=cosβ,cosα=sinβより、α+β=π/2である。 従って与式の解の和は、 (θ+α)+(π-(θ+α))+(π+(θ+α))+(2π-(θ+α))-2(α+β)=3π

  • 三角関数について

    kは定数とする。θの方程式 2(√3sinθ-cosθ)+(√3sin2θ+cos2θ)=k(0≦θ≦π) について次の問いに答えよ。 (1)t=√3sinθ-cosθとおくとき、tをrsin(θ+α)の形(r>0、-π<α≦π)に変形せよ。また、tの取りうる値の範囲を求めよ。 (2)(1)のtについてt^2を計算して、 √3sin2θ+cos2θをtの式で表せ。 (3)θの方程式 2(√3sinθ-cosθ)+(√3sin2θ+cos2θ)=k(0≦θ≦π)の解の個数を分類しなさい。 この問題で (1) t=2sin(θ+2/3π) -1≦t≦2 (2)√3sin2θ+cos2θ=-t^2+2 と答えがでて、 (3)y=kとy=-t^2+2t+2が共有点について調べればよい。までわかったんですが、そこからθの個数について分類するまでが分かりません。  解答は k<-1,3<kのとき解θは0個 -1≦k<2のとき解θは1個 k=2,3のとき解θは2個 2<k<3のとき解θは3個 となっていますが、0個の分類はわかるんですが、1~3個までの分類の仕方が分からないので教えてください。

  • 偏微分方程式の一般解などについて

    偏微分方程式の一般解などについて 二点質問があります。 1. 「n階偏微分方程式の一般解はn個の任意関数を含む」とテキストにあったのですが、なぜそう言えるのでしょうか? n階常微分方程式の場合は、n回積分してやればn個の任意定数が出てくる、というように理解できるのですが、偏微分方程式の場合はどう考えたらよいのかよく分かりません。とくに、なぜ任意「定数」ではなく、任意「関数」なのでしょうか? 2. 1に関連しますが、偏微分方程式の一般解であるための必要十分条件みたいなものはあるのでしょうか?たとえば、n階常微分方程式ならn個の線形独立な基本解の線形結合が一般解となると思うのですが、偏微分方程式の場合はどうなんでしょうか? どうぞよろしくお願い致します。