ベストアンサー 1次関数の問題 2011/04/06 15:54 1次関数 y=2x+3について 次の問いに答えよ (1)xの値に対する関数の値yを対応表にまとめよ。 (2)この関数のグラフの傾きと切片を求めよ。 (3)この関数のグラフをかけ。 次の1次関数のグラフをかき。x軸、y軸との交点の座標を求めよ。 (1)y=2x-3 (2)y=-x+2 画像を拡大する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー yukaru ベストアンサー率12% (143/1118) 2011/04/06 16:08 回答No.1 (1)yはひだりから -3-113579 となります (1)がわからないなら(2)以降はやる必要ありません、時間の無駄 質問者 お礼 2011/04/06 16:18 ご回答ありがとうございます。 (1)が未だに理解できていないので (2)以降は書かないでおきます。 お手数お掛けしました。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 2次関数と1次関数の問題 マナー違反かどうかわかりませんが。問題が解けないので教えて下さい。 1次関数y=2/3x+2と2次関数y=ax2^のグラフの交点2ヶ所を結んだ線がy軸切片で左から2:3に分割される時の2次関数のaの値を教えて下さい。 1次関数と2次関数と連立方程式からx座標を2ヶ所求めるのでしょうけど、数字ではなく2:3というところがどうも分かりません。 いくら考えても分かりません宜しくお願い致します。 高校2次関数の問題 ・2次関数y=x^2-2xのグラフをx軸方向にa、y軸方向に2a-1だけ平行移動したグラフをCとするとき、次の各問に答えよ。ただし、aは定数とする。 (1) Cが点(0,4)を通るとき、aの値をすべて求めよ。 (2) Cが直線y=xと相違なる2点で交わるとき、 (i) aの値の範囲を求めよ。 (ii) 2つの交点のx座標がともに1以上になるようなaの値の範囲を求めよ。 以上の問題の解き方がよくわかりません。長くなりましたが、詳しい説明よろしくお願いいたしますm(__)m 2次関数 すいません、またお世話になります。 y=x^2-2x のグラフをx軸方向にa、y軸方向に 2a-1 だけ平行移動したグラフをCとするとき、次の各問に答えよ。 (1)Cが直線y=x 相異なる2点で交わるとき、 {1}aの値の範囲を求めよ。 {2}2つの交点のx座標がともに1以上となるようなaの値の範囲を求めよ。 複合(?)した、2つの関数のとっつき方がいまいちわかりません。どういう風に考えればよいでしょうか? 2次関数の問題をどなたか解いてください(ノ_・。) 1.次の各問いに答えよ。 (1) 2次関数f(x)=x^2-9x+8のグラフの頂点を求めよ。 (2) nを整数とするとき、f(n)=n^2-9n+8の最小値、およびそのときのnの値を求めよ。 2.次の各問いに答えよ。 (1) 放物線y=1/2x(10-x)のグラフを描け。 (簡単にどんなかで構いませんのでお願いします。) (2) 放物線y=1/2x(10-x)とy=(x-5)^2+aが異なる2つの交点をもち、交点のx座標α、βが0<α<β<10をみたすようなaの範囲を求めよ。 よろしくお願いします(ノ_・。) SOS!!関数分かりません>< 中3問題 中3女子です!!期末テストが19.20日にあるため、勉強しているのですが、数学がどうにもこうにも難しすぎますTT。 関数なんですが… (数学リピート学習P112) (2)関数y=x2,y=ax2のグラフがある。 点(3.0)を通りy軸に平行な直線と、これらのグラフ、x軸との 交点をA,B,Cとする。また、Aを通りx軸に平行な直線がy=ax2の グラフと交わる点をDとし、Dからx軸に垂線DEをひく。 次の問いに答えなさい。 (1)AB=6のとき、aの値を求めなさい。 (2)AB:BC=3:1のとき、aの値を求めなさい。 (3)店Eの座標が(3√2,0)のとき、aの値を求めなさい。 です。全然分かりません。答えも詳しく書いてなくて…(-_-;) お願いします。 あと関数を解くコツも教えていただけると嬉しいです(~o~) 一次関数の問題がわかりません>< 一次関数の問題がわかりません><。 問題は、以下の通りです。 Oは原点、PはY=X-6のグラフと関数Y=-3/1X+6(3分の1プラス6)のグラフとの交点である。また、AはY軸上の点、Bは関数Y=X-6のグラフ上の点、Cは関数Y=-3/1X+6(3分の1プラス6)のグラフ上の点で、四角形ABCDは長方形である。 点A、Dの座標がそれぞれ(0、6)、(12、10)のとき、次の問いに答えよ。 (1)点Pの座標を求めよ (2)点Bの座標を求めよ (1)は、余裕でできたのですが、(2)が全然わかりません。等積移動や全体の面積から該当の図形を出してみたりしたのですが、出ません(泣) 因みに、(1)の解は、(9、3) (2)は、(3、-3)となります。 画像添付させていただくので見にくいかもしれませんが、回答よろしくお願いいたします。 関数の問題です。 下の図のように関数y=1/2x^2のグラフ上にx座標が-6,2となる点A,Bをとる。また,線分AB上に点Pをとり,Pを通りy軸に平行な直線と放物線,x軸との交点をそれぞれQ,Rとする。このとき,次の問に答えなさい。 (1)直線ABの式を求めなさい。 (2)線分PQとQRの長さの比が3:1となるような点Pのx座標を求めなさい。 お願いしますm(_ _)m 指数関数の問題です。教えて下さい! 2つの関数f(x)=3の2x乗、g(x)=3k-x乗(kは正の定数)がある。 またy=g(x)のグラフとy軸との交点をAとする。 y=f(x)とy=g(x)のグラフの交点をP、点Aを通りx軸に平行な直線とy=f(x) のグラフとの交点をQ、点Qを通りy軸に平行な直線とy=g(x)のグラフとの 交点をRとする。このときP,Q,Rの座標をそれぞれkを用いて表せ。 また、三点P,Q,Rに対して三角形OPAと三角形PQRの面積の比が3:1 となるようなkの値を求めよ。ただし、Oは座標の原点とする。 解き方がさっぱり分かりません。 詳しい解説をできたらよろしくお願いします! 中学数学の関数の問題です。 右の図で、(1)は関数y=ax+8、(2)は関数y=-x²のグラフであり、xの値が-2から0まで増加するときの、(1)の変化の割合と(2)の変化の割合は等しい。 また、x上に、x座標が正である点P(t、0)をとり、点Pを通りy軸に平行な直線と(1)、(2)との交点をそれぞれA、Bとする。 このとき、次の問いに答えよ。 問い1 aの値を求めよ。 答え:a=2←これはできました。 問い2 △OABが、OA=OBの二等辺三角形になるようなtの値を求めよ。 答え:t=4 この問い2がどうしてもわかりません…。 学校で先生に聞けばいいのですが、まだ日があり、待ちきれないので、どなたか教えてほしいです。 ※ちなみに右の図というのは添付の画像の図のことです。また、ここでは記号の数字が使えなかったので、図のグラフの数字は(1)、(2)と書いています。 一次関数 関数 y=-x+12 のグラフと関数 y=2x のグラフとの交点を、A、y=-x+12とx軸との交点をBとします。また、線分OA上に点Pをとり、点Pを通りx軸に平行な直線と直線ABとの交点をQとします。 これについて、次の問いに答えなさい。 (1) 点Pのx座標が1のとき、線分PQの長さを求めなさい。 答え 9 (2) △AOQの面積と△BOQの面積が等しい時、直線OQの式を求めなさい。 答え y=1/2x (3) 線分PQの長さが8のとき、点Qのx座標を求めなさい。 答え 28/3 (1) (2) の求め方はわかりましたが、(3)が分かりません。 求め方を教えて下さい。 2次関数の問題を教えて下さい y=x2-ax+48のグラフが原点Oの左側でx軸と2点P、Qで交わり、OQ=3OPであるとき、次の各問いに答えよ。 (1)点Pxの座標をkとして、この2次関数をkを用いて表せ。 (2)与えられた2次関数の係数aとkの関係式を求めよ。 (3)aの値および点P,Qの座標を求めよ。 (4)この2次関数のグラフは、関数y=x2のグラフをどのように平行移動したものか。 付則:読みにくいかもしれませんが、xのあとの2は2乗のことです。 OQ=3OPは問題にどう影響してくるのでしょうか。解き方含め教えて下さい。 2次関数がわかりません。 また、解けなかった問題があるので 教えてください。お願いします。 右の図のように、2つの関数y=ax²(aは正の定数)…(1)、 y=-x²…(2)のグラフがある。(2)のグラフ上に点Aがあり、 点Aのx座標を負の数とし、点Oは原点である。 次の問いに答えなさい。 (1)(1)についてxの変域がー2≦x≦0のとき、 yの変域は1≦y≦8である。aの値を求めなさい。 (2)点Aのx座標をー2とし、点Aを通りx軸に平行な直線と(2)のグラフとの 交点のうち、点Aと異なる点をBとする。点Bとx座標が等しい(1)のグラフ上の点を Cとする。(1)のグラフ上に点Dを、x座標がー3となるようにとる。四角形ABCDの 面積が25、aの値を求めなさい。 です。お願いします。 二次関数と一次関数での問題です。 二次関数y=2X^2+3x-kの頂点のx座標と関数のグラフがx軸と交わらないときのkの範囲とy=5x-3と関数のグラフが接するときのkの値を求めよ。 接する時のkの値 5/2なんですが、式の解説お願いします。 関数 関数Y=x2(二乗) と Y=-3/x(x >0)のグラフがあります。 関数 Y=x2(二乗)のグラフ上の点Aのx座標は1です、また関数 Y=-3/x のグラフ上の点Bのx座標は6です。次の問いに答えなさい。 (1) 点Bのy 座標を求めなさい。 (2) 2点A、Bを通る直線の方程式を求めなさい。 (3) 関数 Y=x2 において、xの値が-2.65から2.35まで増加するときの変化の割合を求めなさい。 (4) 関数 Y=x2 のグラフ上の点で、x座標が-2.65の点をCとし、x座標が2.35の点をDとします。 線分BCと線分ADとの交点をEとするとき、AE:EDの比を求めなさい。 という問題です。 (1)はY=-1/2 (2)はY=-3/10x+13/10 (3)は-0.3 となったのですが、合ってますか? また(4)は求め方がわかりません。教えてください。 2次関数がわかりません 先ほどの問題打ち間違えがありました。 すいませんでした。 また、解けなかった問題があるので 教えてください。お願いします。 右の図のように、2つの関数y=ax²(aは正の定数)…(1)、 y=-x²…(2)のグラフがある。(2)のグラフ上に点Aがあり、 点Aのx座標を負の数とし、点Oは原点である。 次の問いに答えなさい。 (1)(1)についてxの変域がー2≦x≦0のとき、 yの変域は0≦y≦8である。aの値を求めなさい。 (2)点Aのx座標をー2とし、点Aを通りx軸に平行な直線と(2)のグラフとの 交点のうち、点Aと異なる点をBとする。点Bとx座標が等しい(1)のグラフ上の点を Cとする。(1)のグラフ上に点Dを、x座標がー3となるようにとる。四角形ABCDの 面積が25、aの値を求めなさい。 よろしくお願いします。 中二 1次関数 閲覧ありがとうございます 1次関数のこの問題の答えが全くわからず、解き方もわかりません(泣) ・1次関数 y=2x+3について次の問いに答えなさい この1次関数のグラフが、x軸と交わる点の座標とy軸と交わる点の座標をそれぞれ求めよ。 です…全っぜんわかりません(汗) どなたか詳しく教えて下さいm(__)m 2次関数についての問題で解答解説を失くして困っています。解法を教えてく 2次関数についての問題で解答解説を失くして困っています。解法を教えてください。(中学3年生) 2次関数Y=ax^2(a>0,^2はエックスの2乗のことです)上にx座標が正である点Aとx座標が負である点Bをとります。(図では点Aのy座標よりも点Bのy座標の方が数値が大きいです。)2点A,Bから座標軸に下ろした垂線との交点をP(X軸上の正側)Q(Y軸上でSより下側)R(X軸上の負側)S(Y軸上でQより上側)とします。Oを原点としてOR=2OPが成り立ち、Pの座標を(p,0)とするとき、次の問いに答えなさい。 (1)Aの座標をa,pを用いて表しなさい。 四角形OPAQが正方形になるとき、以下の問いに答えなさい。 (2)正方形OPAQの1辺の長さpをaを用いて表しなさい。(問いの意味が理解できません?) (3)直線ABの傾きを求めなさい。(直線は右下がりです) (4)△BPQの面積をaを用いて表しなさい。 (5)角OABの2等分線と2次関数Y=ax^2(^2はエックスの2乗の意味です)との交点をCとします。四角形OABCの面積が1のとき、aの値を求めなさい。 以上、わかりやすい解答解説をお願いします。<(_ _)> 座標の範囲の解法をおしえてください。 図のように2つの関数y=ax²(aは定数)…(1)、y=-x+b…(2)のグラフがある。関数(1)のグラフ上に2点A、Bがあり、AのX座標は-3、BのX座標は1、直線ABの傾きは4/3である。また、点Pは関数(2)のグラフとy軸との交点である。 直線ABと(2)の交点Qのy座標が0よりおおきくなるようなbの値の範囲を求めなさい。 ※(1)(2)は、図のまる1まる2です(文字が入力できなかったため( )の表記となっております 関数の問題 関数y=2x^2のグラフがある 点A,B,Cはこのグラフ上の点でx座標はそれぞれ-2、2、3である。このとき、次の問いに答えよ。 1、直線ACの方程式を求めよ。 2、ΔABCの面積を求めよ。 3、ΔABCとΔADCのめんせきが等しくなるような点Dをy軸上にとったとき、点Dの座標をすべて求めよ。 1、y=2x+12 2、20 3がわかりません。 答えを持っていないため、1,2もあっているかわかりません。 とくに、3番はまったくわからないので、おしえてくだし。 関数 関数 y=x2と、関数 y= -3/x (x>0) のグラフがあります。 関数 y=x2のグラフ上の点Aのx座標は1です。また、関数 y= -3/x のグラフ上の点Bのx座標は6です。 次の問いに答えなさい。 (1)点B のy座標を求めなさい。 (2)2点 A,Bを通る直線の方程式を求めなさい。 (3)関数 y=x2において、x座標が-2.65から2.35まで増加するときの、変化の割合を求めなさい。 (4)関数 y=x2のグラフ上の点で、x 座標が-2.65の点をCとし、x座標が2.35の点をDとします。 線分BCと線分ADとの交点をEとするとき、AE:ED の比を求めなさい。 (1)(2)(3)は分かりました。(4)の求め方がわかりません。教えて下さい。
お礼
ご回答ありがとうございます。 (1)が未だに理解できていないので (2)以降は書かないでおきます。 お手数お掛けしました。