ベストアンサー 図形の問題 2011/01/21 00:17 問題文そのまま転記します。 右の図で、AB//CD、2つの線分ADとBCの交点をEとするとき、 線分CDの長さを求めなさい。 解説お願いいたします。 画像を拡大する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー sengoku38 ベストアンサー率55% (32/58) 2011/01/21 00:32 回答No.1 答え 6cm 上の三角形(ABE)と下の三角形(CDE)は、相似。 (AB//CDから、3つの内角がそれぞれ等しいとわかるから) 相似比は、BE:CE=2:3 AB:CD=2:3 ABが4cmだから、CDは6cm 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 中学数学の図形の問題です。 数学の図形の問題がわかりません。教えてください。よろしくお願いいたします。 図のようにAB=6cm、BC=9cmの長方形ABCDがある。辺ADの上側に点Eを、AB=AE、AD=DEとなるようにとる。また、点Eから辺ADにひいた垂線と辺ADとの交点をFとし、点Dから線分AEにひいた垂線と線分AEとの交点をGとする。点Hは線分CEと辺ADとの交点である。 このとき次の問いに答えなさい。 ・点Eと直線CDとの距離を求めなさい。 ・線分DHの長さは線分FHの長さの何倍か求めなさい。 平面図形 高校受験の問題 御世話になっております。恥ずかしい限りですが、次の問題にてこずってます。(正味2時間) 添付図参照 問 図で、点Pは線分ADとBCの交点であり、線分AB//PQ//CD。AB=8cm、CD=12cmの時、線分PQの長さを求めい 何卒 次の図形問題を教えて下さい。 図のように,線分ABを直径とする半円Oの⌒ABを5等分します。 そのうち,⌒ABを1:4に分ける点をC,3:2に分ける点をDとします。 線分BCとADとの交点をEとし,点Eから直径ABに垂線をひき,その交点をFとします。 このとき,次の各問に答えなさい。 (1) ∠DEBの大きさxを求めなさい。 (2) △AEFと△AECが合同であることを証明しなさい。 平面図形の問題 図のように、∠A=30°、∠B=90°、BC=1である直角三角形ABCがある。辺AB上に∠CDB=45°となるように点Dをとる。また直線ABと点Aで接し、点Cを通る円と直線CDの交点をEとする。 (1)線分ADの長さを求めよ。また、∠DAEを求めよ。 (2)線分AEの長さを求めよ。 (3)弦ACに関して、点Eと反対側の弧上に点Pをとる。 △ACPの面積の最大値を求めよ。 と言う問題があるのですが、(1)の1つ目の問題しか解けませんでした。分かったものだけでもいいので、お待ちしております。 平面図形の問題 図のような△ABCがある。辺BC上に点Dを、辺CA上に点Eを、辺AB上に点Fを、BD/DC=CE/EA=AF/FB=1/2となるようにとる。さらに、線分ADと線分CFとの交点をP、線分ADと線分BEとの交点をQ、線分CFと線分BEとの交点をRとする。 △PQRと△ABCの面積比△PQR/△ABCの値を求めよ。 という問題の解き方を教えてもらえないでしょうか? 回答よろしくお願いします。 数1 図形問題の解答お願いします H24.06 下記が問題文です。【1】~【5】が問題箇所です。 出来れば問題の解答の解説も付けて頂けると嬉しいです。 *図は画像を参照してください。 図のように△ABCの2辺AB、ACの中点をそれぞれD、Eとし、 線分DCを2:1に内分する点をHとして、頂点Aから点Hを通る 直線と線分DEとの交点をG、辺BCとの交点をFとする。 また、DB=4、DG=2、∠ABC=60°である。 (1) 三角形の辺BCの長さは、BC=【1】であり、線分DEの長さはDE=【2】である。 (2) 三角形の辺ACの長さは、AC=【3】である。 (3) この△ABCの面積は、【4】であり、△ADGの面積の【5】である。 平面図形の問題です!! 3辺の長さが AB=7、BC=5、CA=3√6である三角形ABCにおいて、 辺ACを直径とする円が辺AB、BCと交わる点を それぞれD、Eとし、CDとAEの交点をFとするとき、 線分BFの長さを求めよ。 早めの解説をお願いしたいです。 数学の面積を求める問題です。 図で、三角形ABCの辺BCを直径とする半円Oと辺AB、辺ACとの交点をそれぞれD、Eとする。 頂点Bと点E、頂点Cと点Dをそれぞれ結び、線分BEと線分CDとの交点をFとする。 ∠ABC=60°、∠ACB=75°、BC=4cmのとき、線分ADと線分AEと弧DEで囲まれる図形の面積は何cm2か。ただし、円周率はπ(パイ)とする。 (解説も宜しくお願いします。) 図形の問題 『線分ABを直径(4cm)とする円で、弧ABを3等分する点のうち点Aに近い方から順にC,Dとする。BCの延長上に、∠DAE=90°となるような点Eをとる。このときの線分DEの長さを求めなさい。』という問題が解けません。BCとADの交点をPとして、△PAE∽△PDBなので、相似比がわかれば△AEDについて三平方の定理を使えば解けると思っているのですが、相似比がわかりません。もしかして、この考え方自体が間違っているのでしょうか・・・教えてください!!! 数1 図形の問題の解答お願いします H24.07 下記が問題文です。【1】~【5】が問題箇所です。 出来れば問題の解答の解説も付けて頂けると嬉しいです。 *図は画像を参照してください。 図のように、円周上に4点A、B、C、Dがある。 線分ACと線分BDは点G垂直に交わり、 点Aから辺CDに垂線AFをおろし、この垂線と線分BDとの交点をEとする。 また、AF=8、DC=10、GC=6である。 (1) 線分DGの長さは、DG=【1】である。 このとき、線分AGの長さは、AG=【2】である。 (2)線分ABの長さは、AB=【3】であり、BDの長さは、BD=【4】である。 (3)△DCGの面積は△AEBの面積の【5】倍である。 中学数学図形の問題です 教えて下さい 図の四角形ABCDは AB//CD、∠ABC=90°の台形である。線分BCの中点をMとし、点Mと点Aを結び、線分AMを点Mの方向に延ばした直線と、辺CDを点Cの方向に延ばした直線との交点をEとする。点Dと点Mを結ぶ。∠AMD=90°のとき次の問いに答えよ (1)∠MAB=68°のとき、∠ADEの大きさを求めよ (2)AB=2cm、CD=8cmのとき 辺ADの長さを求めよ、△DAEの面積を求めよ よろしくお願いします なぜ直角三角形とわかるの、図形の問題せす。 次の図のように、AD∥BC,AD=3cm,BC-6cm、∠BCD=90度の台形ABCDがある。辺AD,CD の中点をそれぞれM、Nとし、辺BCの三等分点をK、Lとする。 (1)AB=4cmのとき、CDの長さを求めよ: (ここは理解できた。) (2)ALとMKの交点をPとするとき、AP:ALを求めよ: (ここは理解できた。) (3)ALとNKの交点をQとするとき、△ABLの面積は△QKLの面積の何倍になるか。 ここの解説が理解できません。 添付の画像の図があり△DGMをつくると、△QKLが直角三角形であることが解ると解説があるのですがその理由がわかりませんよろしくおねがいします。 図形の問題 三角形ABCがある。辺AB、ACの中点をそれぞれD、Eとし、辺BCを1:2に分ける点をFとする。また、線分CDと線分EFとの交点をGとする。CG=6のとき、線分GDの長さを求めよ。 と言う問題です。 線分BCの比の合計が3なので、DEの比が3/2として、 2:3/2=6:DGとなり DG=9/2 となりました。 このような考えでよろしいのですか? 比でも足して、中点連結定理がなりたつのですか? また、私が考えた解答で間違いがありましたら教えてください。 図形問題について 添付資料ですが、教えていただきたいことがあります。 問題 添付図でACとBDは円Oの直径であり、点Eは∠ACDの二等分線と円Oの交点である。線分ADとBEとの交点をF、線分ADとCEとの交点をGとする。 ΔACG∽ΔEAFがいえるものとする。 (ア)CGの長さを求めなさい (イ)EFの長さを求めなさい 答えは(ア)3√5、(イ)√5 ということですが、いかにして求めたらよいのでしょう? 高校入試の過去問を解いていて解説が無い為悩んでいます。教えていただけないでしょうか? 作成した図が下手ですが、線分BDは円の中心Oを交わっています。 高校入試レベル図形問題 「図は、線分ABを直径とする半円で、弧AD=弧CDです。AB=10cm、AD=6cmのとき、BCの長さを求めてください」 公立高校入試の図形問題 円と三角形 下の図のように 円周上に点A,B,C,Dがあり、三角形ABCは正方形で、CD=1、AD=2,BD=3センチM. また、線分ACと線分BDの交点をEとする。 (1)角ADB=? (2)塩分DEの長さ=? (3)線分BC=長さ=? (4)三角形ABCの面積=? なるべくシャープで明快な解説をお願いします。 図形問題 数学で解き方が分からない問題があります。 図のように、AB=6cm、AD=8cmの長方形ABCDがある。対角線BD上にDE=4cmとなるように点Eをとる。2点A、Eを通る直線と辺CDとの交点をFとする。また、辺AB上にAG=5cmとなるような点Gをとり、線分FGと対角線BDとの交点をHとする。 このとき次の問に答えよ。 (問)BH:HDを最も簡単な整数の比で表わせ。 答えは、1:4です。 (問)△EHFの面積を求めよ。 答えは、32/5です。 求め方が分かる方がおられたら教えて欲しいです。 図形の問題がわかりません。 閲覧ありがとうございます。 図形の問題がわかりません。教えてください。 問題を書きます。 図のように 円Oに内接する四角形 ABCDがあります。2辺 AD, BE を延長し その交点を Cとし、∠ABE =90゜, 2AB =BC, AB =1, EはBCの中点とします。このとき、 ∠ADEの大きさ と,円Oの直径と, DEの長さを求めよ。 また、△ABCの面積は△CDEの面積の何倍か。 というのが問題です。 詳しく教えて戴ければ嬉しいです。 よろしくお願い致します 数学「図形の性質」 ∠A=30°、∠B=90°、BC=1である直角三角形ABCがある。辺AB上に∠CDB=45°となるように点Dをとる。また直線ABと点Aで接し、点Cを通る円と直線CDの交点をEとする。 (1)線分ADの長さを求めよ。また、∠DAEを求めよ。 (2)線分AEの長さを求めよ。 (3)弦ACに関して、点Eと反対側の弧上に点Pをとる。△ACPの面積の最大値を求めよ。 求め方がわかりません。 三平方の定理を使ってADを求めたのですが、間違っているような気がします。 解説よろしくお願いします。 中学数学の図形問題で分からない所があります 数学の問題なのですが分かりません 下の図で四角形ABCDは長方形、Eは辺AB上の点、Fは辺BCの中点である。 また、GはFD上の点で、EG⊥FD、HはECとFDとの交点である。 AB=12cm 、 AD=8cm 、 AE=4cm である。 線分GDの長さを求めよ。 という問題です。 恐縮ですが 宜しくお願い致します。