• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:集合の濃度について)

集合の濃度についての疑問

boisewebの回答

  • ベストアンサー
  • boiseweb
  • ベストアンサー率52% (57/109)
回答No.1

次の質問に対する私の回答(#5/ベストアンサー)の第2~3段落を読んでください.それがそのまま1つめの質問の答えになっているはずです. 集合のユニークな要素数の数式表現について http://okwave.jp/qa/q6412594.html 2つめの質問は,「1/3 はAに属する,しかし 2/6 はAに属さない」ということは起こりうるか? と考えてみれば,すぐに答えが出ると思います.

oshiete-kun
質問者

お礼

ご回答ありがとうございました. 今,自然数と有理数の濃度の比較について勉強していて, http://www4.airnet.ne.jp/tmt/tourmj/tour04.pdf などを拝見していました・・・ 1 と 2/2 と 4/4 の実体が同じとして扱っていった場合, ズバリそのものの全単射写像がどのようなものになるのか うやむやになっており・・・ 1 と 2/2 と 4/4 を別物として取り扱うことができれば 非常に明解なのにと思っていました. 結局,「無限なので」というところでお茶をにごされて いるような気がしていますが・・・難しいものですね. とにかくは,ご回答誠にありがとうございました!

関連するQ&A

  • 集合の濃度に関する質問です

    可算無限集合Aの濃度をα_0(アレフ0) R^nの濃度をα_1(アレフ1) (nは自然数) Aの冪集合の濃度を2^α_0(2のアレフ0乗?) ※ヘブライ語のアレフの代わりに、αを使って記述してます。 なので以下αはアレフと読むことにします。 このとき (1)α_0よりα_1のほうが"大きい"こと (2)α_0より2^α_0のほうが"大きい"こと の2つはわかったのですが、α_1と2^α_0ではどちらが大きいのですか? それとも2^α_0=α_1なのでしょうか? 私の記憶では、α_1はα_0の次に"大きい"濃度と定義されていたような気がしますが・・それだとα_0より大きくα_1より小さい濃度は存在してはいけないことになりませんか?(つまり、α_1>2^α_0の可能性はない) 来年度に数学科2年となる身なので、あまり高度な知識は持ち合わせていないです・・。すいません。 どなたか詳しい方がいらっしゃいましたら回答よろしくお願いします。 [補足] (1)については Aが可算(自然数全体の集合Nとの間に1対1かつontoな写像ができる)である一方で、Rは対角線論法により非可算なので、α_0よりα_1のほうが"大きい"としました。(RとR^nの濃度が等しいことの証明は省略します) (2)については Aの冪集合の濃度、つまり元の個数を、Aの各元を含むか含まないかを1と2に対応させることで、小数0.122111222121122・・・・・の総数へと帰着し、あとはこの小数全体に対して対角線論法を用いることで、α_0より2^α_0のほうが"大きい"としました。 「Aの各元を含むか含まないかを1と2に対応させる」とは、 たとえば、A={1,2}であればAの冪集合の濃度(個数)は2^2=4個ですが、これを 0,22⇔Φ(空集合) 0,12⇔{1} 0,21⇔{2} 0,22⇔{1,2} というように小数に対応させるということです。 "大きい"という言葉の定義をしてないのでこの表現が曖昧かもしれませんが、上記のようにして"大きい"かどうかを判断しました。

  • 集合の濃度と写像について

    (1) 自然数全体の集合、実数全体の集合を全角の大文字 N , R と表すことにします。 ガウスの整数環 { a + b √- 1 | a , b は整数} 素数全体 N で定義された実数値関数全体 F ( N , R ) 上記の3つの集合の濃度は次の3つのうちのどれに当てはまりますか。 1.N の濃度に等しい。 2.R の濃度に等しい。 3.N , R の濃度のいずれとも等しくない。 (2) 開区間 ( 0 , 1 ) から閉区間 [ 0 , 1 ] への全単射を作ってください。 答えだけでよいので、どなたか教えていただけませんか。

  • 濃度についてーその2

      任意の集合はそのべき集合を作り続けることによって、無限に増大する濃度を持つ集合列が生成できることは証明されています。 例えばこれを可算集合から開始した場合、 可算集合の濃度=アレフ0 可算集合のべき集合の濃度=アレフ1 可算集合のべき集合のべき集合の濃度=アレフ2 可算集合のべき集合のべき集合のべき集合の濃度=アレフ3         ・         ・         ・         ・ 以下無限に続く。 このように無限に増大する濃度を持つ集合列アレフ0、アレフ1、アレフ2、・・・・が生成されます。 また同様にして連続体から開始した場合、 連続体の濃度=ベート0 連続体のべき集合の濃度=ベート1 連続体のべき集合のべき集合の濃度=ベート2 連続体のべき集合のべき集合のべき集合の濃度=ベート3         ・         ・         ・         ・ 以下無限に続く。 このように無限に増大する濃度を持つ集合列ベート0、ベート1、ベート2、・・・・が生成されます。 さて質問です。 1. 任意の自然数nに対して適当な自然数mを取ることにより、ベートn=アレフmを成立させることが出来ますか。 2. 任意の集合に対しその濃度をAとするとき、適当な自然数mやnを取ることによりA=アレフm、A=ベートnを成立させることが出来ますか。  

  • 無限集合の連続体濃度のよりも大きな濃度?

    http://ufcpp.net/study/set/cardinality.html#carginality 上記のサイトを眺めておりましたところ、下記の記述に出会いました。 ===引用=== 余談になりますが、 この記号 ‭א は、 ヘブライ文字の1文字目で、ギリシャ文字のα、ローマンアルファベットの a の元になった文字です。 無限基数の中で小さいものから順に、 ‭א0 , ‭א1 , ‭א2 , ・・・ と表します。 昔は、 無限基数を小さいものから順に、 ヘブライ文字の第 n 文字目で表していました (aleph, beth, gimel, daleth, ・・・)が、 読めないし、写植の上でもなかなか表示できないので、 アレフの右下に添字を付ける今の表記法になりました。 ===引用終わり=== 恥ずかしながら、無限集合の濃度の事を聞いて以来、無限集合の濃度は下限が ‭א0で上限がא1なのかと勝手に思っておりました。 ところが、上述のように、 ‭א0 , ‭א1 , ‭א2 , ・・・ ということでありますと、俄然 ‭ ‭‭א2の濃度を持つ無限集合に興味が湧いてまいりました。 連続体濃度よりも濃度が大きい無限集合とはどのような集合でしょうか? 数学の素人なものですから、直観的に理解できそうな実例を一個・二個、お示し頂けるとありがたいです。

  • 濃度のべき乗 (冪乗)についての問題で困ってます。

    以下が教えていただきたい問題です。 集合Xの濃度を#Xで表す.特に,#φ= 0 であり,#{φ} = 1 である 更に,濃度のべき乗(冪乗) (#Y)^(#X) を #(Y^X) と定義する (1) (#Y)^0 を求めよ (2) 0^(#X) を求めよ (3) 0^0 を求めよ (要証明) 濃度のべき乗の定義を調べたところ、濃度α,β(ただしα≧1,β≧1) に対して α= #A, β= #B となる集合 A, B をとり AからBへの写像全部の集合 B^A の濃度を冪β^αとする となっていて濃度が 0 のときの場合について触れている本も無く困ってます なんとなく (1)~(3) の答はどれも 0? ヒントだけでいいのでよろしくお願いします。

  • 濃度の厳密な定義はもはや不可能なのですか?

    識者の皆様宜しくお願い致します。 最近,集合位相入門(松坂和夫)を購入し拝読しておりますがこの本のp65にて 『濃度は"集合全体の集まり"を対等関係によって類別したときの各"同値類"である。実は集合全体の集まりというのは、我々が今まで考えていた意味での集合ではないが、"類別"の考えを少し広めて用いることは当然認めてもよいだろう』 という記述がありますが,これは正確に解釈すると 『濃度は"集合全体の集まり"を対等関係によって類別したときの各"同値類"である。実は集合全体の集まりというのは、我々が今まで考えていた意味での集合ではないが、"類別"の考えを少し広めて用いることは当然認めてもよいだろうが万一ダメだったとしても当方は一切責任持ちません』 と見て取れ,何とも歯切れの悪い定義だなぁと感じました。 結局,濃度(という同値類)はφと有限集合{1,2,…,n}と可算集合N(=:アレフ_0)とアレフ_0の非可算集合Rとアレフ_1の非可算集合2^R,アレフ_3の非可算集合3^R,… と可算個に類別できるのだと思います。 濃度の厳密な定義を知りたいのですがこの "実は集合全体の集ま…ことは当然認めてもよいだろう" の箇所の曖昧さをすっきり解消させるにはどう記述すればいいのでしょうか? 公理的集合論の書籍でさえも濃度の定義の際に「集合全体の集まりを類別する」という表現をさり気なく記述せずに類別によって濃度の定義をしているようです。 濃度を厳密に定義する場合,どういう手順で類別を定義すればいいのでしょうか? また, 歯切れのいい濃度の定義をしてある書籍やサイトがあれば是非ご紹介下さい。

  • 集合は有限集合と無限集合だけですか?

    有限集合の元の数を考えるとき、 「いかなる有限集合よりも元の数が多い有限集合は存在しない」------(A) ことがわかります。一番大きな基数の有限集合が存在しないと言い換えても良いですね。 ところがここに無限集合の概念を導入すると 「いかなる基数の有限集合よりも大きい集合として無限集合がある」---(A’) ここで「大きい」とは二つの集合の元を対応させて行くと、「大きい」方の元が余ることを言います。 ここでは、“超有限集合”=無限集合という関係が成り立ちます。 さて、公理的集合論の公理により、無限集合Rから常にPower(R)が作れるので、 「いかなる無限集合よりも濃度の数が多い無限集合は存在しない」------(B) が成立しました。 一番大きな濃度の無限集合が存在しないと言い換えても良いですね。 ここで、有限、無限に続く第三の概念として、“超無限集合”=寿限無集合(仮名)という概念を導入します。 すると、(A)に対して(A’)が成り立ったように、(B)に対して(B’)が成り立ちます。 「いかなる濃度の無限集合よりも大きい集合として寿限無集合がある」---(B’) 質問1:このような寿限無集合はZFC公理系で無矛盾に定義できますか? 質問2:集合の種類は有限と無限の二種類でしたが、第三の概念を導入すると、無限集合では成り立たないが寿限無集合の世界だけで成り立つ定理も発見できると思うのですが、このような概念の拡張をした数学者はいましたか? 質問3:有限と無限以外に第三の概念を導入することが無意味であると立証できますか?

  • 集合族の和集合や積集合を教えてください

    松坂和夫の位相集合入門を読んでいます。 集合族自体の理解が危うく、19ページでその和集合や積集合の話なって完全に行き詰りました。 たとえばA={a,b}のべき集合の要素は、∅ ,{a} ,{b} , {a,b}ですが、 この4つは相異なりますからこれらの集合の積集合は無いと思います。 それに限らず一般にべき集合の要素は全て相異なるのでしょうから、集合族の積集合を考えても無意味に思います。 ですが本では集合族の和集合や積集合に言及されていることから、すでに理解が追いついていないとお思いました。 実際に集合族の和集合や積集合とはどんなものか、具体例から説明してくださればありがたいです。 また、Xの要素xを変数として含む文章pについてその文章が真になり得ることを ∃x∈X(p)と書くと約束すると 集合族をSとしたときに、明らかにその和集合は∪S={x|∃A∈S(x∈A)}と書けるという風にかいてあったのですが、私には全然分かりません。∃A∈S(x∈A)という条件を自然な言葉に置き換えられません。集合族のある要素Aにxが含まれている?という条件を満たすxと強引に解釈してみても、これも真偽を確かめられる具体例も思いつかず理解できている気がしません。 これについても解説いただければ幸いです。

  • アレフ0とアレフ1の和集合、、、

    無限集合における確率に関して疑問が生じましたので、質問させてください。 集合Aをアレフ0の無限集合とする。 集合Bをアレフ1の無限集合とする。 集合Aと集合Bの積集合は空集合である。 集合Cを集合Aと集合Bの和集合とする。 質問1:任意に選んだ「集合Cの要素」が、集合Bの要素である確率を求めることができますか? 質問2:求めることが出来る場合、その確率は1ですか、1/2ですか、それともその他の確率ですか? (蛇足) 質問3:上記の定義を変更し、集合A、集合Bの濃度が同じだった場合、集合Cから選んだ任意の要素が集合Bの要素である確率は1/2と考えてよいでしょうか?

  • 「直積集合の全集合」とは?

    別の方の質問 http://oshiete1.goo.ne.jp/qa4877672.html を見ていて気になった点についてです。 「集合族の空集合と全集合」とは何でしょうか? 通常、「空集合」や「全集合」は、何らかの集合の ベキ集合族に対して定義される概念かと思います。 一般の集合族に対する「全集合」とは、どのように 定義されるのでしょう? 「集合族Φの全集合」と言ったら、Φ自身のことでしょうか、 それとも、Φの最大元のことでしょうか? ご存知の方、解説よろしくお願いします。 先の http://oshiete1.goo.ne.jp/qa4877672.html の例で言えば、 ΨとΩの集合族としての直積は、質問氏の書いている Ψ×Ω = { (A,B) ; A∈Ψ, B∈Ω } ですが、これは、 ベキ集合族ではないし、σ集合族でもありません。 Y と Z の空間としての直積に付随するσ集合族 という意味で 言っているのだとすれば、「直積」は、このΨ×Ωではなく、 Ψ×Ωの任意個の元の和集合全体が成す集合族 になるハズです。 その際、「全集合」が Y×Z であることは違いありませんが… また、A×0 = 0×B = 0 と考えるなら、この式の「×」を 0 と B の集合としての直積と解釈したことになります。 Ψ×Ω = { A×B ; A∈Ψ, B∈Ω } と表記するのならば、 右辺内の A×B は、A と B の対 (A,B) という意図で 標準的でない書き方をしてしまったものと解釈すべきで、 A と B の集合としての直積ではありえません。 その場合、0×B は、Ψ×Ωの元で Y成分が 0、Z成分が B の ものであって、空集合ではありません。