- ベストアンサー
至急、集合と写像
至急、集合と写像 明日テストなのですが、教科書に解説が乗っていない問題のため質問させて下さい。 【1】 各n∈Nに対してEn⊂En+1であれば lim(n→∞)En=∪(n=1,∞)En 各n∈Nに対してEn⊃En+1であれば lim(n→∞)En=∩(n=1,∞)En が成り立つことを示せ。 【2】 lim(n→∞)An, lim(n→∞)Bn がともに存在すれば次の等式が成り立つことを示せ。 (1) lim(n→∞)(An∪Bn)=lim(n→∞)An∪lim(n→∞)Bn (2) lim(n→∞)(An∩Bn)=lim(n→∞)An∩lim(n→∞)Bn 【3】 A,Bを集合とし、各k∈Nに対してE2k=A, E2k-1=Bとおく。次式が成り立つことを示せ。 lim(n→∞)supEn=A∪B lim(n→∞)infEn=A∩B 自分なりに色々考えたのですが、解答がないためとても困っています。 どうか宜しくお願いします。
- みんなの回答 (2)
- 専門家の回答