• ベストアンサー
  • すぐに回答を!

【2次曲線】

【2次曲線】 放物線Y^2=4Xと焦点を共有して、頂点がこの曲線の上にあり、軸がY軸に平行な放物線の方程式を求めよ。 よろしくお願いします (>人<)

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

 放物線Y^2=4Xと焦点は 点(1,0)です。  また放物線の軸がY軸に平行ですので、この軸は直線 X=1 です。  放物線の頂点は放物線Y^2=4Xにあり、放物線の軸は X=1 ですので この頂点は(1,±2) となります。  このことから求める放物線はpを実数として次のように置けます。   Y=4p(X-1)^2±2    (以下、異なる式の間でも複号同順で対応します。)  この放物線の焦点は 点(1,p±2) となります。  ところで、この焦点は放物線Y^2=4Xの焦点でもありますので点(1,0)です。   ∴p±2=0 ∴p=干2  従って、求める放物線の方程式は次のようになります。   Y=干8(X-1)^2±2 (複号号順)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 【2次曲線】

    【2次曲線】 (1)放物線Y=X^2の焦点と、この放物線上の点とを結ぶ線分の中点の軌跡の方程式を求めよ。 (2)点(2.0)を一つの焦点とし、2直線Y-X-1=0とY+X+1=0を漸近線とする双曲線の方程式を求めよ。 よろしくお願いします m(._.)m

  • 2次関数グラフ(高校)

    (1)放物線Y=-2x二乗を平行移動したもので、点(1.3)を通り、頂点が直線Y=2X+1上にある (2)頂点が(3.-9)でX軸から切り取る線分の長さが6である 上の条件を満たす放物線の方程式を求めよ。(1)(2)は別問題。 という問題がわかりません。教えてください。

  • 数学IIIの問題

    平面上の曲線に関する問題です。助けてください、解説もお願いします 次の放物線の方程式 (1) 焦点(1,0) 準線 x=-1 (2)焦点(0,-2) 準線 y=2 次の放物線の焦点の座標と準線の方程式 (1)y^2=5x (2)y+4x^2=0 次の楕円の焦点の座標 (1) x^2/25 + y^2/9 =1 (2)4x^2 + 3y^2 =12 楕円9x^2 +16y^2 =144をx軸方向に2, y軸方向に -3,だけ平行移動して得られる図形の方程式

  • 2次関数の決定

    1. 2次関数y=ax(2乗)+bx+cのグラフを、x軸方向に3、y軸方向にー2だけ平行移動した方物線は、点(5,13)を通り、頂点の座標が(2,-5)である。このとき、定数a,b,cの値を求めよ。 2. 放物線y=-3x(2乗)+2xを平行移動した曲線で、2点(-2、-20)、(3、-15)を 通る放物線の方程式を求めよ。 上記2問が全く分からないのですが、丁寧にお答えいただけますか?

  • 数学の問題です

    y=x^2-8x+6・・・(1)とy軸との交点を頂点とし(1)の頂点を通る放物線(y=-x^2+6)・・・(2) (1)を平行移動させた放物線で、放物線(2) の曲線上に頂点をもち、さらに、(-3.-9)を通る放物線(3)を求めよ。 この問題の解説をお願いします!

  • 2次曲線です!

    焦点が原点で、準線が直線x=-2k(kは定数)である放物線の方程式を求めよ。 これは準線がx=-2kなので焦点が(2k,0)の放物線はy^2=8kx それで焦点を原点にするためにx方向に-2k平行移動させてy^2=8k(x+2k)にしました。 しかし答えが違います。 どこがどう違うのか教えてください><

  • 2次関数の問題について教えてください

    頂点が(1,2)で点(3,4)を通る放物線の方程式を求めよ。 ただし、放物線はY軸に平行であるとする。 解答より、答えはY=1/2x^2-x+5/2は計算できました。 ただ、簡単な問題集のみで勉強しているため、 「ただし、放物線はY軸に平行である」の意味がわかりません。 Y軸に平行とはどういうことなのでしょうか? どなたか意味を教えていただけませんか? よろしくお願いいたします。

  • 放物線を表す式

    頂点が直線y=x上にあり、2点(0,3)(4,19)を通りy軸と平行な軸を持つ放物線の方程式ってどうやって求めればいいのでしょう? どなたか教えてください

  • 2次曲線の標準形について

    教科書に書かれてある2次曲線の標準形についてですが、これは使うときに条件ってあるんですか? 特に放物線はpを焦点の座標としたときy^2=4pxやx^2=4pyと表されますが、次のような問題の場合これがうまくいきません。 焦点が原点にある放物線を考える。~~~ これでは明らかにp=0ですから方程式は導かれません。解答では「p≠0の条件のもとで~~~これをp平行移動して~~~」などとしていました。結局教科書をよくよくみてみると放物線が原点を通っていて焦点と準線が原点を境に対称に位置しているときだけのことを書いてると思ったのですが... ちょっと不安なんでアドバイスよろしくお願いします。

  • 一般2次曲線の放物線型

    4x^2-4xy+y^2-10x-20y=0・・・(1)を標準形になおす問題で、計算手順がわからないので質問します。 (xyの係数)^2-4(x^2の係数)*(y^2の係数)=16-16=0で(1)は放物線であることはわかるのですが、(1)をxについて偏微分したものの方程式=0と、yについて偏微分したものの方程式=0を連立方程式として解こうとすると、 (xyの係数)^2-4(x^2の係数)*(y^2の係数)=0・・・(2)より連立方程式が解を持たないので、(1)の原点を平行移動した方程式が求まりません。 楕円型などでは、(xyの係数)^2-4(x^2の係数)*(y^2の係数)≠0より、与えられた方程式を平行移動した式が求まり、そこから、tan2θ=(xyの係数)/{(x^2の係数)-(y^2の係数)}・・・(3)を満たすθだけ、座標軸の回転(tanθ=1/2のとき、sinθ=1/√5,cosθ=2/√5より原点を平行移動した座標軸をX,Yとし、さらに座標軸をθ回転した座標軸をX',Y'とすると、X=(1/√5)*(2X'-Y')とY=(1/√5)*(X'+2Y')を原点を平行移動した方程式に代入すると、xyを含む項が消える。)した式を求めて答えの方程式をもとめています。 また(1)の座標軸を回転移動した軸をX,Yとすると、(2)より回転移動後のX^2かY^2の係数は0になるということで、(1)における(3)を求めて、tanθ=-1/2よってsinθ=-1/√5,cosθ=2/√5まで求めたのですが、tanθ=-1/2でX^2の項が消えるか、Y^2の項が消えるかどちらかわからないので、計算しようがないです。 どなたか、一般2次曲線の放物線型において、座標軸を平行移動した方程式と、座標軸を回転移動する式を代入する方程式、の求め方を教えてください。お願いします。