• ベストアンサー
  • すぐに回答を!

数学の問題です

y=x^2-8x+6・・・(1)とy軸との交点を頂点とし(1)の頂点を通る放物線(y=-x^2+6)・・・(2) (1)を平行移動させた放物線で、放物線(2) の曲線上に頂点をもち、さらに、(-3.-9)を通る放物線(3)を求めよ。 この問題の解説をお願いします!

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • asuncion
  • ベストアンサー率33% (1960/5882)

y = x^2 - 8x + 6 ... (1) とy軸との交点は、x = 0を代入した(0, 6) (1)の頂点は y = (x - 4)^2 - 10 より(4, -10) (0, 6)が頂点である放物線は y = ax^2 + 6 と表わせる。これが(4, -10)を通るから、 -10 = 16a + 6よりa = -1 よってy = -x^2 + 6 ... (2) (1)をx軸方向にp, y軸方向にqだけ平行移動した放物線は y = (x - p)^2 - 8(x - p) + q + 6 である。これを平方完成すると y = x^2 - (2p + 8)x + p^2 + 8p + q + 6 = (x - (p + 4))^2 - p^2 - 8p - 16 + p^2 + 8p + q + 6 = (x - (p + 4))^2 + q - 10 より頂点は(p + 4, q - 10) これが(2)の上にあるから q - 10 = -(p + 4)^2 + 6, q = -p^2 - 8p y = (x - (p + 4))^2 - p^2 - 8p - 10 これが(-3, -9)を通るから -9 = (-3 - p - 4)^2 - p^2 - 8p - 10 = (p + 7)^2 - p^2 - 8p - 10 = 6p + 39 よりp = -8 よって(3)はy = (x + 4)^2 - 64 + 64 - 10 = (x + 4)^2 - 10

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます!

その他の回答 (1)

  • 回答No.2
  • asuncion
  • ベストアンサー率33% (1960/5882)

>よって(3)はy = (x + 4)^2 - 64 + 64 - 10 = (x + 4)^2 - 10 あと一歩。 y = x^2 + 8x + 6

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学IIIの問題

    平面上の曲線に関する問題です。助けてください、解説もお願いします 次の放物線の方程式 (1) 焦点(1,0) 準線 x=-1 (2)焦点(0,-2) 準線 y=2 次の放物線の焦点の座標と準線の方程式 (1)y^2=5x (2)y+4x^2=0 次の楕円の焦点の座標 (1) x^2/25 + y^2/9 =1 (2)4x^2 + 3y^2 =12 楕円9x^2 +16y^2 =144をx軸方向に2, y軸方向に -3,だけ平行移動して得られる図形の方程式

  • 数学の問題

    Xの二次関数y=2^x2-8x+6のグラフをG1とする。G1とX軸との交点をA,Bとする。 G1とY軸との交点をCとする。 点CのY座標は(    )である。 直線ACの式はy=(    )である。 点Bを通り直線ACに平行な直線Lの式は、y=(   )である。 二点ABを通り、軸はy軸に平行であり、頂点が直線L上にある放物線G2の式はy=(  )である。 この(   )にはいる答えをわかりやすく教えて下さい。

  • 数学Iの二次関数の問題です

    解説を見ても分からない問題があったので分かる人がいたら教えて下さい。 問 放物線y=x^2+ax+aを原点に関して対称移動し、さらに、x軸の正の方向に1,y軸の正の方向にbだけ平行移動したところ、この放物線は点(2,0)でx軸に接した。定数a,bの値を求めよ。 解説 放物線の原点に関する対称移動、平行移動と定数の値 放物線y=f(x)を原点に関して対称移動すると-y=f(-x) よって、y=x^2+ax+aは  y=-x^2+ax-a・・・(1) に移る。 一方、(1)は放物線y=-(x-2)^2を、x軸方向に-1、y軸方向に-bだけ平行移動したもの・・・(2) と一致すると考えてよい。 (2)を整理し、(1)=(2)からa,bの値を求める。 (参考) 放物線y=f(x)を、x軸方向にα,x軸方向にβだけ平行移動するとy-β=f(x-α) 回答 a=2 b=1 (2)を整理し、(1)=(2)からa,bの値を求めるのところができないんです。分かる方がいたら教えて下さい。

  • 二次関数の問題

    塾の問題なのですが、先生に聞いてもいまいちわかりませんでした。 解答よろしくお願いします! 関数y=2x^2のグラフを平行移動したグラフが次の条件をみたすとき、その関係の式と、 放物線の頂点、y軸との交点を求めよ。 (1) 2点 (-2,21),(3,-9)を通る。

  • 二次関数の問題です。分かりません、教えて下さい。

    放物線y=2xの二乗-4x+1・・・(1)がある。 放物線(1)をx軸方向にp、y軸方向にqだけ平行移動した放物線は 頂点のy座標が3で、点(3,5)を通る。 このとき定数p、qの値を求めよ。 解き方が全く分かりません・・・ 詳しい解説をよろしくお願いします。

  • 数学の問題がどうしてもわかりません。

    a≠0とする二次関数y=x^2+ax+bの頂点をA、このグラフとy軸との交点をBとする。Aが直線y=-1/3x上にあり、Bが放物線y=(x-a)(x-b)上にあるとき、a、bの値の組(a,b)は何と何か。 この問題がどうしてもわかりません。 (a.b)となっているので、頂点をだせばいいのかとおもい計算してみたのですが、できませんでした。 解答と解説をお願いします。

  • 数学の問題

    数学の問題 ある2次関数のグラフは、放物線Y=-x2じょうを平行移動したもので、点4,1を通り、頂点が直線Y=2x+1上にあるという。 この2次関数を求めよ という問題がでたのですが、代入や、平方完成などいろいろな方法を試してみたのですが、どうしてもできません。こたえは二つあるようです。 先生に聞いても、この問題の解説はしないと言って教えてくれません。 どのようにしたら解くことができるのでしょうか?

  • 2次関数の問題について教えてください

    頂点が(1,2)で点(3,4)を通る放物線の方程式を求めよ。 ただし、放物線はY軸に平行であるとする。 解答より、答えはY=1/2x^2-x+5/2は計算できました。 ただ、簡単な問題集のみで勉強しているため、 「ただし、放物線はY軸に平行である」の意味がわかりません。 Y軸に平行とはどういうことなのでしょうか? どなたか意味を教えていただけませんか? よろしくお願いいたします。

  • 放物線y=-x^2+2x+2を、x軸方向にp

    放物線y=-x^2+2x+2を、x軸方向にp y軸にq平行移動して得る放物線をC とする。Cの頂点は、y=-2x+7上にある。 放物線Cとy軸の交点のy座標を 最大にするようなpの値と このときの交点の座標を求めよ。

  • 【急ぎ】放物線の平行移動の問題

    y = (x - 10)^2 - 12 を x軸に平行に +5動かし、y軸に平行に-7動かす。 この平行移動後の放物線の方程式は?という問題なのですが、 y = (x - 15)^2 - 19 だと思ったのですが、友達と答えが違っていたため不安になり質問させていただきました。 こちらの答えであっているのでしょうか? また、頂点は(15,-19)でしょうか?