奇素数pについての整数の組と互いに素な自然数の組の存在

このQ&Aのポイント
  • 奇素数pについて、x^2+y^2=n×pを満たす整数x,y,nが存在するかどうか、またa^2+b^2=p^2を満たす互いに素な自然数の組a,bが存在するかどうかについて質問があります。
  • 質問者は先ほど似た質問をしたが、そのときは「互いに素」が確認したかったが、この質問では改めて質問をし直しました。
  • 質問者の確認結果によれば、2つの平方数の和が奇素数pの倍数になる場合と、互いに素な自然数の組が存在する場合があるとされています。
回答を見る
  • ベストアンサー

x^2+y^2=n×pを満たす整数x,y,nが存在する奇素数pについて

x^2+y^2=n×pを満たす整数x,y,nが存在する奇素数pについて、 a^2+b^2=p^2を満たす互いに素なa,bは必ず存在するでしょうか? 換言しますと、奇素数pについて 「x^2+y^2=n×pとなる整数の組x,y,nが存在する」と 「a^2+b^2=p^2となる互いに素な自然数の組a,bが存在する」は同値でしょうか? 先ほど似た質問をさせていただいたのですが、 http://okwave.jp/qa/q6216192.html 私が確認してるのは「互いに素」でしたので改めて質問し直しました。 私の確認したところでは 2平方数の和がpの倍数にならないもの→3,7,11,19 2平方数の和がp倍数になり、且つp^2を満たすa,bが存在するもの→5,13,17 3^2+4^2=5^2, 5^2+12^2=13^2, 8^2+15^2=17^2

質問者が選んだベストアンサー

  • ベストアンサー
  • R_Earl
  • ベストアンサー率55% (473/849)
回答No.1

> x^2+y^2=n×pを満たす整数x,y,nが存在する奇素数pについて、 全ての奇素数pがこの条件を満たします。 ピタゴラス数の組をs, t, uとおけば(s^2 + t^2 = u^2が成り立つとします)、 x = ps, y = pt, n = pu^2となれば全ての素数がx^2+y^2=n×pを満たします。 なにか条件が抜けていませんか? > a^2+b^2=p^2を満たす互いに素なa,bは必ず存在するでしょうか? p = 3の時、a, bに当てはまる自然数が存在しません。 > 私の確認したところでは > 2平方数の和がpの倍数にならないもの→3,7,11,19 > 2平方数の和がp倍数になり、且つp^2を満たすa,bが存在するもの→5,13,17 > 3^2+4^2=5^2, 5^2+12^2=13^2, 8^2+15^2=17^2 申し訳ないのですが、ここの部分で何を言いたいのかが分かりません。 どの数字がa, bやpに当てはまるのでしょうか。

sak_sak
質問者

補足

回答ありがとうございます。 観察結果を上手く問題文に変換できてなくて申し訳ないです。 >なにか条件が抜けていませんか? 「x,yは互いに素」も必要でした。 >どの数字がa, bやpに当てはまるのでしょうか。 (a,b,p)=(3,4,5),(5,12,13),(8,15,17)です。 pが、3,7,11,19のとき、条件を満たすa,bは存在しません。

関連するQ&A

  • x^2+y^2=n×pを満たす整数x,y,nが存在する奇素数pについて

    x^2+y^2=n×pを満たす整数x,y,nが存在する奇素数pについて、 a^2+b^2=m×p^2を満たすa,b,mは必ず存在するでしょうか? 換言しますと、奇素数pについて 「x^2+y^2=n×pとなる整数の組x,y,nが存在する」と 「a^2+b^2=m×p^2となる整数の組a,b,mが存在する」は同値でしょうか? 19くらいまでは調べたのですが、普遍的かちょっとわからなくて…

  • x^2+y^2=n×p (nは整数)を満たす互いに素な自然数x,yが存

    x^2+y^2=n×p (nは整数)を満たす互いに素な自然数x,yが存在する奇素数pについて、 a^2+b^2=p^2を満たす互いに素なa,bは必ず存在するでしょうか? 換言しますと、奇素数pについて、nを自然数とするとき 「x^2+y^2=n×pとなる互いに素な自然数の組x,yが存在する」と 「a^2+b^2=p^2となる互いに素な自然数の組a,bが存在する」は同値でしょうか? 先ほど似た質問をさせていただいたのですが、 http://okwave.jp/qa/q6216279.html ミスがあり改めて質問し直しました。 私の確認したところでは (a,b,p)=(3,4,5),(5,12,13),(8,15,17)で成り立ちます。 pが3,7,11,19のとき、条件を満たすx,yもa,bも存在しません。

  • 任意の正の有理数Pについて、x^2+y^2=P…(A) を満たす有理数

    任意の正の有理数Pについて、x^2+y^2=P…(A) を満たす有理数x,yは必ず存在しますか? 似たような質問ばかりしてるのに応用力が無くすみません。 Pが有理数pを用いてP=p^2と表せる場合は 適当なピタゴラス数a,b,c(但しa^2+b^2=c^2)を用いて x^2+y^2=p^2{(a/c)^2+(b/c)^2}となるので x=ap/c,y=bp/cが(A)式を満たす有理数の組の1つと言えますが P=p^2と表せない場合も、(A)式を満たすx,yは存在するのでしょうか? 更なる疑問としては、Pが無理数の場合も知りたいのですが…。

  • 非負整数a,b,c,x,yで、ax+byとcが互いに素でなくなるのは?

    非負整数a,b,c,x,yで、ax+byとcが互いに素でなくなるのは? a,b,cは互いに素でa^2+b^2=c^2、またx,y,cも互いに素であるとします。 例えば、(a,b,c)=(3,4,5)、(x,y)=(-1,7)ならば、 ax+by=25となって、cと素でなくなりますが、 どういった条件が成り立てば良いのでしょうか? 任意の整数の組(x,y)が与えられた時に、 (ax+by)/c≠0が約分できるような(a,b,c)の組を知りたいのです。 よろしくお願いします。 ちなみに以前の質問↓の続きです。 http://okwave.jp/qa/q6158436.html

  •  高木初等整数論 p85 

    初等整数論で (n/m)は平方剰余のルジャンドルの記号、もしくは,Jacobiの記号とします。水平の-が書けないため。 (記号の説明) φ(m):オイラー関数:mと素である整数の数 Legendreの記号 x^2≡a  (mod.p)が解をゆうするときにaをpの平方剰余、そうでないとき平方非剰余という。 not(a≡0) (mod.p)でないとき、aが平方剰余であるか、非剰余であるかに従って (a/p)=+1または-1 (m/n)の定義 n>1が奇数で,n=pp'p''---が、nの素因数分解でsるとき,(m,n)=1なる整数mに関して (m/n)=(m/p)(m/p')(m/p'')---とする。 右辺は、Legendreの記号 jacobiの記号 (定理) mが平方数でないならば、mを法とするφ(m)個の既約類のうち、半数に属するnに対しては(n/m)=+1、他の半数に対しては、(n/m)=-1 (証明)と続きますが。 mを法とする同一既約類に属するnに対しては(n/m)の値は一定. いまφ(m)個の既約類の代表を(n/m)の値によって+の組と-の組とに分けて、 (+)  a1、―――,an    (a/m)=+1 (-) b1、―――,bn    (b/m)=-1 とする。 a≡1(mod m)であるaなどは+の組に属するが、仮定でmは平方数でないから、-の組も空虚でない。 (質問)mは平方数なら、-の組は空虚は明らかですが、mは平方数でないから、-の組も空虚でないはどうしていえるのでしょうか。わかりやすく説明ください。

  • 既出の質問 √xが整数 (x=y^2+3n+54 yは自然数)になるy

    既出の質問 √xが整数 (x=y^2+3n+54 yは自然数)になるyはいくつでしょうか で、もしも、(x=y^2+3y+54 yは自然数)になるyはいくつでしょうか になれば、yを求められるでしょうか。 よく使う手で y^2+3y+54=k^2 自然数k>0とおく。とやって、 左辺に平方の形をつくる。となるけれど、3yでうまくいかない。 3y=2y+yにしてみてもあとが、続かない。 よろしくおねがいします。

  • {ax+by|x,y∈Z}

    aとbが互いに素とは限らないときは、{ax+by|x,y∈Z}は、aとbの最大公約数の倍数全体の集合になる。この定理の証明でわからない点があるので質問します。 これらの定理は、S={ax+by|x,y∈Z}とおくと集合Sが"差に関して閉じている"という性質をもつ。 (x_1,x_2,y_1,y_2∈Zのとき、(ax_1+by_1)-(ax_2+by_2)=a(x_1-x_2)+b(y_1-y_2)ここでx_1-x_2,y_1-y_2∈Zとなること)ので、ある正の整数dを用いてS={nd|n∈Z}(Sはdの倍数全体)と表されるのであるが、 Sの最初の定義から、a∈S(x=1,y=0とする)かつb∈S(x=0,y=1とする)であるから、aとbはdの倍数(dはa,bの公約数)であり、・・・(1) ここからがわからないところです。他方、ax_0+by_0=dとなる整数x_0,y_0が存在するのだから、a,bの任意の公約数はdの約数であるから・・・(2)、dはa,bの最大公約数というわけである。で証明は終わるのですが、 証明の大まかな流れは、(1)よりd≦(a,b) (a,b)は、aとbの最大公約数、(2)よりd≧(a,b)よって、d=(a,b)だと思うのですが、ax_0+by_0=dをa'dx_0+b'dy_0=dとしてみたりしても、a,bの任意の公約数はdの約数であるから、というのがわかりません。どなたか、他方、ax_0+by_0=dとなる整数x_0,y_0が存在するのだから、a,bの任意の公約数はdの約数である。を説明してください。お願いします。

  • P(x)が任意の素数pでわれるようなnの求め方

    多項式P(x)の係数が全て整数で、最大次数の係数は1として、 任意の素数pでP(n)が割りきれるようなnは全てのpで求められるのでしょうか? (もとめられなくても任意の素数pに対してnが必ず存在することが示せればいいです) 僕が考えたのは p以下の自然数は全てpに互いに素なので、 P(x)に0以上p-1以下の自然数をおのおの代入してpで割ったときの余りが全て異なるとすると、 nは全てのpにおいて存在するとできるかなとおもったのですが、余りはこの場合異ならないのでしょうか? ことなるとしたらどう説明できますか? 回答よろしくお願いします

  • nから2nの間に奇素数が全く存在しない区間があるとすると,

    nから2nの間に奇素数が全く存在しない区間があるとすると, それは,どの様なnになりますか? ただし,nは正の整数です. 無限に近い非常に大きな自然数列の中に,奇素数が全く存在しない膨大な区間があるといわれます.しかも,その区間は,幾らでも大きく取れると聞いたことがあります.そこで,上記の質問がでたわけです. 一応,この質問を命題の形に書いておきます. (1) n を正の整数とする.n=1, 2, 3, ・・・.     n∈N(自然数全体の集合) (2) m を正の整数とし,m は n<m<2n を満たすとする. (3) 集合A(n)を以下のように定義する.nを或る値に固定した時,      A(n)={ m | m,n∈N, n<m<2n} A(n) の 元 m∈A(n) は,m=n+1,n+2, n+3,・・・  ・・・ 2n-2,2n-1 となる. ●命題:集合A(n)の全ての元 m∈A(n)が奇素数でないような,十分大きな正の整数nが存在する. この命題は,成り立つでしょうか? 成り立たないでしょうか? ご教授下さい.また,単なるご意見でもかまいませんので,お寄せ下さい. (参考):仮に,n=10 とすると,10 と 20 との間には,奇素数 11, 13, 17, 19 が存在します.n=23 とすれば,46 との間には,奇素数 29, 31, 37, 41, 43 が存在します.この様にならない十分大きなnが存在するでしょうか? と言うのが,質問の趣旨です.

  • 4x-3y=20……(1) を満たす整数x,yの組を求

    4x-3y=20……(1) を満たす整数x,yの組を求める。 x=5,y=0は(1)を満たしており(1)は 4(x-5)=3y と変形できる。 4と3は互いに素より,kを整数としてx-5=3kより,y=4kとなり x=3k+5,y=4k と表すことができる。 といった文章中に出てくる、「4と3は互いに素より…」というところは、何を表しているんですか?