• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:レポートの半分がやり直しなのです…orz)

レポートの半分がやり直し…再提出に向けてどうすればいいか

このQ&Aのポイント
  • レポートの半分がやり直し…再提出に向けてどうすればいいか
  • √(x-a)=xを解く方法とその解のパターンについて解説します
  • x={1±√(1-4a)}/2が解のパターンとなりますが、条件によって解が存在しない場合もあるため注意が必要です

質問者が選んだベストアンサー

  • ベストアンサー
  • spring135
  • ベストアンサー率44% (1487/3332)
回答No.1

>1/4<aかつa<0の時、 このようなaの例をあげなさい。 間違ってもこんな書き方をしてはいけません。 数学を文字だけで捉えようとしています。 グラフを書いてじっくり考えてください。 a>1/4 解なし a=1/4 重解 x=1/2 0≦a<1/4 異なる2つの実根x=(1±√(1-4a))/2 a<0 1実根 x=(1+√(1-4a))/2

izayoi168
質問者

お礼

>>数学を文字だけで捉えようとしています その通りです…orz 単位試験でもケアレスミスが多くていつも凹みます。 方眼紙買ってきます。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.2

>1/4<aかつa≧0の時 間違い。 正: 1/4>aかつa≧0の時 >1/4<aかつa<0の時 間違い。 正:1/4>aかつa<0の時 後は4つの場合をaの範囲で分けてまとめる。 a>1/4のとき 解なし a=1/4のとき x=1/2(重解) 0≦a<1/4のとき x={1±√(1-4a)}/2 a<0のとき x={1+√(1-4a)}/2

izayoi168
質問者

お礼

いつもお世話になります、info22_さん。 数学板の皆さまのお陰で、数学の専門単位も結構取得できました。 が、一向にケアレスミスが減りません…orz ともあれ、この問題は何とかなりそうです。 有難うございます。 ベストアンサーは解答順でspring135さんにさせて頂きます。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 場合分けの考え方

    以前も質問したのですが、場合分けについてよく分からないので教えてください。(範囲の求めかた) xの方程式√(x-a)=xの実数解の求めかたが分かりません。 aは実数とする。 √(x-a)は正または0なのでx≧0 √(x-a)=xの両辺を2乗してx-a=x^2 (x^2)-x+a=0 判別式で表すとD=1-4a (i) D<0のとき1-4a<0からa>1/4のとき実数解をもたない (ii) D=0のとき1-4a=0 a=1/4のときx=1/2で重解 (iii) D>0のとき1-4a>0 a<1/4のとき 実数解はx=1±√(1-4a)/2 α={1-√(1-4a)/2},β={1+√(1-4a)}/2から、どのように場合分けをすればいいのか分かりません。 答えは 0≦a≦(1/4)のとき x=(1±√(1-4a))/2 a<0んとき x=(1-√(1-4a))/2

  • 2次方程式の問題

    xについての2次方程式、x^2+ax+2=0を解くのに、 誤って、x^2+2x+a=0を解いてしまったため、 重解をもつはずだった方程式の解が、 実数の解をもたない事になってしまった。 このとき、定数aの値は、「2√2」である。 上記の問題の、 「」内の値の求め方を教えて欲しいです。 判別式を使ってやる事は分かったのですが、 解き方がイマイチ分かりません。 よろしくお願いします。

  • 実数係数4次方程式の判別式

    http://www004.upp.so-net.ne.jp/s_honma/polynomial/discriminant.htm を参照して、判別式について考えています。 そこでの、普通の意味での判別式は、 D = a_0^2(n-1)Π( αi - αj )^2 で、 D=0⇔多項式 F(X) (または、方程式 F(X)=0 )は、重根をもつ です。 2次においては、 D>0ならば、2つの相異なる実数解をもつ D<0ならば、2つの相異なる虚数解をもつ D=0ならば、実数の2重解をもつ 3次においては、 D>0ならば、3つの相異なる実数解をもつ D<0ならば、1つの実数解と2つの虚数解をもつ D=0とする。p=q=0ならば、3重解(解は0のみ)をもつ        pq≠0 ならば、 3つの実数解(2重解とその他の解)をもつ のように、2次や3次に限っては、判別式Dの正負または0の値によって明確に分類されます。 では、4次方程式の場合にはどうなるでしょうか? たとえば、相異なる実数解を4個もつ条件は何でしょうか? (極大値が正、極小値が負という条件を考えましたが、微分した3次方程式を解くことになるし、結果もきれいにならないだろうし、また、より一般には、5次方程式は解けないし、なにか別のいい方法を知りたいと思っています。)

  • 2次方程式が実数解を持つ範囲

    こんばんは、宜しくお願いします。 2次方程式 x^2-(8-a)x+12-ab=0が定数aの値に関わらず実数解を持つときの定数bの範囲を求めよ。 まず、実数解とあるので重解でもよいから判別式D≧0ですよね。 それで、D=a^2+4(b-4)a+16ですね。 ここで、ここからの進め方が分らなかったので答えを見ると、 ”aの2次方程式=a^2+4(b-4)a+16の判別式を新たにDaとおくとD≧0となる条件はDa/4≦0でなければいけない。”とあるのですが、わからないです。 なぜDa/4≧0ではなくDa/4≦0なのでしょうか? よろしくおねがいします。

  • 実数解

    xの方程式√(x-a)=xの実数解の求めかたが分かりません。 aは実数とする。 √(x-a)は正または0なのでx≧0 √(x-a)=xの両辺を2乗してx-a=x^2 (x^2)-x+a=0 判別式で表すとD=1-4a (i) D<0のとき1-4a<0からa>1/4のとき実数解をもたない (ii) D=0のとき1-4a=0 a=1/4のときx=1/2で重解 (iii) D>0のとき1-4a>0 a<1/4のとき 実数解はx=1±√(1-4a)/2 α={1-√(1-4a)/2},β={1+√(1-4a)}/2とすると (α+β)/2=1/2>0 これからどのようにして範囲を求めればいいかわかりません。

  • (k^2-1)x^2+2(k-1)x+2=0の解の種類

    クリックありがとうございます(∩´∀`)∩ ★kを定数とするときxの方程式(k^2-1)x^2+2(k-1)x+2=0の解の種類を判別せよ。 (答)-3<k<-1,-1<k<1のとき異なる2つの実数解   k=-1のとき1つの実数解   k=-3のとき重解   k=1のとき解はない   k<-3,1<kのとき異なる2つの虚数解 私はk=-3,1のとき重解 -3<k<1のとき異なる2つの実数解 k<-3,1<kのとき異なる2つの虚数解 と出たのですが… 説明お願いします。

  • 2次方程式

    次の2次方程式の解の種類を判別せよ。ただし、a、b、は実数の定数とする。 13x^2-2(2a-3b)x+a^2+b^2=0 答えが3a+2b=0になるとき重解になるのはわかりますが、 3a+2≠0のときに異なる2つの虚数解という のがわからないです ()^2の形なのに、虚数解が2つもでるなんてことありえるのでしょうか、。 例をあげて説明をおねがいします。。

  • 判別式の過程について

    これで合ってますか? ax^2+6x+a-8=0 判別式をDとおく。 D=36-4(a-8)・a  =36-4a^2+32a  =-4a^2+32a+36  =(a-9)(a+4) D>0すなわち-1<a<0、0<a<9のとき異なる2つの実数解 D=0すなわちa=-1、9のとき重解 D<0すなわちa<-1、9<aのとき異なる2つの虚数解 a=0のとき方程式は6x-8=0となり、1つの実数解 時間のある方、ご回答宜しくお願いします。

  • 二次関数の「2つの解」の定義

    こんにちは。 数IIの二次関数について質問です。 「異なる2つの実数解」の時は、判別式D>0ですが、 「2つの実数解」と書いているときはD>=0なのでしょうか? 重解も2つの解としてみなされるのでしょうか?

  • 数学IIの問題あっていますか?

    問 mを定数とする。次の2次方程式の解の種類を判別せよ。 (1) x2+4x+m=0 D>0すなわちm<4[異なる2つの実数解] D=0mすなわち=4[重解] D<0すなわちm>4[異なる2つ虚数解] (2) x2-mx+4=0 D>0すなわちm<-4[異なる2つの実数解] D=0mすなわち=-4[重解] D<0すなわちm>-4[異なる2つ虚数解] であっていますか?