• ベストアンサー
  • 暇なときにでも

二次関数の「2つの解」の定義

こんにちは。 数IIの二次関数について質問です。 「異なる2つの実数解」の時は、判別式D>0ですが、 「2つの実数解」と書いているときはD>=0なのでしょうか? 重解も2つの解としてみなされるのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数3194
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

>「異なる2つの実数解」の時は、判別式D>0ですが、 >「2つの実数解」と書いているときはD>=0なのでしょうか? >重解も2つの解としてみなされるのでしょうか? そのとおりです。 一般に,n次(多項式の)方程式は,(重複も含めて)n個の解を持ちます。(この定理を代数学の基本定理といい,高校では結果だけ認めて用いています。) そこで,方程式を論じるときは,「n次方程式はn個の解をもつ」ことを原則とします。したがって,「異なる」と明記しない場合は,重解も含めて考えます。 2次関数のグラフとの共有点の個数という場合は,接点は当然1個と扱いますから,方程式論と図形の考察との区別には注意を要します。2次方程式の問題をグラフで処理する場合は,題意の言い換えをして解くことになります。 「2次方程式の解」と書くべきところを「2次関数の解」と書き間違えているところをみると,この区別を混同されているのではないでしょうか? なお,多項式以外の方程式では,このような扱いは行ないません。それは,多項式以外の方程式が,図形や関数のグラフを出発点としているからです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 とても良く理解できました。 確かに2次方程式と2次関数を混同していました。 参考書が正しかったんですね。

関連するQ&A

  • 二次関数の問題なので

    二次関数の問題なので 例えばですが y = x^2 + 2kx + k^2 - 2 という二次関数の方程式があるとします。 その方程式f(x)=0が実数解α、β(α≦β)をもつとき、次の問題に答えよ。 という設定があり、(1)の問題 α、βがα≦1≦βをみたすようにkの値の範囲を定めよ。 だったとします。 この問題を解くにあたって、既に問題文に「実数解α、β(α≦β)をもつ」とある場合 もう判別式をつくる必要はないのですか? 普通なら、「判別式が正」「この問題の場合、軸の場合分け」「x=1のときyが負」という三つの条件が必要ですよね? しかし、既に問題文に「絶対二つの解をもつ」と書いてある場合は、判別式は必要ありませんか?

  • 二次関数について、2つ分からないことがあります

    タイトルのように、二次関数で分からない、2つの内容について、お伺い致します。 (1)解の存在範囲の問題について、問題集などに「異なる2つの実数解をもつ・・・」と 「2つの実数解をもつ・・・」と2つのパターンがありますが、判別式D=b^2-4acについて前者は 「D>0」、後者は「D≧0」と条件が違います。 前者は容易に理解できるのですが、後者について理解出来ていません。 2つの実数解のとき、括弧付きで、重解も含む、と丁寧な問題集には載っていますが、 この意味が分かりません。 (2)二次不等式の問題で、 「-1<x<3の範囲でx^2-4ax+6>0がつねに成り立つようなaの範囲をもとめよ」(山梨学院大) と言うような問題で、 i)-1<軸<3、ii)範囲がf(x)=x^2-4ax+6の左側または右側にあるときの2つを考えますが、 ii)の時f(-1)≧0またはf(3)≧0と不等号が「>」ではなく「≧」となるのはなぜでしょうか? 以上2つが理解できません、お教え願えますでしょうか。よろしくお願いいたします。

  • 二次関数の解の範囲の問題の条件について

    さっそくですが、質問させていただきます。 二次関数の解の範囲の問題で、f(x)=ax^2+bx+cが相異なる実数解α、β(α<β)もつとき、 (1)1<α<βをみたす条件は  ⅰ)判別式D=b^2-4ac>0  ⅱ)軸の式x=-b/2a>1  ⅲ)f(1)=a+b+c>0 ですが、 (2)1<α<2<β<3をみたす条件は  ⅰ)f(1)=a+b+c>0  ⅱ)f(2)=4a+2b+c<0  ⅲ)f(3)=9a+3b+c>0 となりますが、 (2)の場合、判別式が条件にならないのは、f(2)<0で、実数解を2つ持つことが明らかなので必要はありませんが、軸の式の条件、 1<-b/2a<3が必要にならない理由がどうもピンとしません。 お分かりかた、教えて頂けないでしょうか? よろしくお願いします。

その他の回答 (2)

  • 回答No.2
noname#24477

>>いくらなんでも「重解」は「2つ」とは言わないでしょう。 そうとも限らない。 「n次方程式はn個の解を持つ」だとか、 解と係数の関係を述べるときに、2つの解をα,βとすると・・・・ などという言い方をしますから。 何かの問題なら、出題者はもっと気を使うべきです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 「異なる2つの実数解」は文字通りわかります。 「2つの実数解」となると同じ2解(重解)でも良いのか、異なる2つの実数解の事なのかわかりにくいです。 なんだか良く考えてみると強ち参考書の間違いとも言えない気がしてきました・・・。

  • 回答No.1

いくらなんでも「重解」は「2つ」とは言わないでしょう。

共感・感謝の気持ちを伝えよう!

質問者からの補足

そうなんですか。 自分の持っている参考書には、 ある二次関数の2つの実数解がともに1より大きい条件の1つが、『判別式D>=0』となっていました。 これは参考書の間違いとみなしていいんですね。 『判別式D>0』が正しいということで・・・。

関連するQ&A

  • 二次関数

    二次方程式x^2-(a-2)x+(a/2)+5=0が1≦x≦5の範囲に異なる2つの実数解をもつとき、定数aの値の範囲を求めよ。 この問題は、どうやって解けばいいんですか? y=x^2-(a-2)x+(a/2)+5と置いて、二次関数を利用して解くのはわかっているんですけど、それをどこから解いていいのかわかりません。 解る人がいたら、教えて下さい。

  • 二次関数の問題についてです。

    急ぎの質問です。 二次関数の問題がわかりません。 以下の問題の解き方&解答を教えてください! 1. aを実数の定数とする。二次関数 f(x)=x^2-2ax+a ( 1≦x≦2 )について。 (1)最小値を求めよ。 (2)最大値を求めよ。 2.(1)実数x、yがx^2+y^2=1をみたすとき、x+y^2の最大値、最小値を求めよ。 (2)実数x、yがx^2+y^2=1をみたすとき、2x-yの最大値、最小値を求めよ。 よろしくお願いします!

  • 二次関数の定義域の問題について

    二次関数の定義域の問題で、tを定数とする。二次関数y=x^2-2x+3(t≦x≦t+2)について、次のそれぞれの場合における最小値を求めよ。 (i)t<-1 (ii)-1≦t≦1 (iii)1<t で、上の式を平方完成したら=(x-1)^2+2になって、グラフの軸はx=1なのですが、グラフに定義域(水色)の位置をどう書いていいのかが分かりません。(とくに、iiの問題など)画像の様になるみたいなんですが、詳しく教え下さい。

  • 二次関数の問題がわかりません!

    凄く急ぎの質問です! 高1の二次関数の問題がわかりません! 以下の問題の解き方&答えを教えてください! 【1】 (1)2次関数y=x^2+kx+4のグラフがx軸と接するとき、実数kの値と接点の座標を求めよ。 (2)2次関数y=x^2-2x+k+1のグラフがx軸と2点で交わるとき、実数kの値の範囲を求めよ。 【2】 aを実数の定数とする。二次関数 f(x)=x^2-2ax+a ( 1≦x≦2 )について。 (1)最小値を求めよ。 (2)最大値を求めよ。 【3】 (1)実数x、yがx^2+y^2=1をみたすとき、x+y^2の最大値、最小値を求めよ。 (2)実数x、yがx^2+y^2=1をみたすとき、2x-yの最大値、最小値を求めよ。 よろしくお願いします!

  • 連立二次関数の解

    判別式√b-4ac が負の値になるときは実数解は存在しないんですよね。 でも虚数解になるので、虚数空間で解を表せますか。 今高校9年生で虚数を表すときには、値を座標を使い、表すと習いました。 ということは、二次関数を表すには、xy座標を使う、つまり2次元で表しますが 虚数を表すためにx、y、それぞれに虚数軸を加えると、2次元+1次元+1次元=4次元で視覚的には表せないということでしょうか。 解りにくい説明だとは思いますが、回答をお待ちしております。

  • 二次関数  範囲

    問題は 二次関数y=f(x)=ax^2-(a+1)x+2a+2(a>0)があり、二次関数方程式f(x)=0の相異なる2実数解α、βが次の条件を満たすとき、αのとり得る範囲を求めます (1)α<4<β どうして、f(4)=14a-2<0 なのでしょうか? 答えは0<a<1/7 (2)2<α<3<β どうして、f(2)=4a>0 f(3)=8a-1<0になるのでしょうか? 答えは0<a<1/8 これはどのように求めるのかわかりません。 お願いします

  • 二次関数の問題

    二次関数の問題 実数a,bに対して、f(x)=a(x-b)^2とおく。ただし、aは正とする。 放物線y=f(x)が直線y=-4x+4に接している。 (1)bをaを用いて表せ。 (2)0≦x≦2において、f(x)の最大値M(a)と、最小値m(a)を求めよ。 この問題がわかりません。 接しているのだから、a(x-b)^2=-4x+4 としました。 これを普通に解いたらだめなんですか? 接しているから判別式D=0としてから解かないといけないのですか?

  • 数学I 二次関数(1)

    基本的な問題は解けるのですが以下の問題がまったく解らず、回答もないので困っています。 教えていただけないでしょうか?よろしくお願い致します。 1.a,bを実数として2次関数 y=2x^2-2ax+b の最小値を -a^2/2+3a-4 とする。 (1)bをaで表す。 (2)この関数がx軸と交点を持たないaの範囲を求める。 2.aを実数として、2つの2次方程式を x^2+2ax+3a-2=0・・・I  x^2-4ax+a+5=0・・・II とする。 (1)Iが重解を持つaの値を求める。 (2)IIが実数解を持たないaの範囲を求める。 (3)IもIIも実数解を持たないaの範囲を求める。 3.aを実数として、 f(x)=(x+a)^2+(1/x+a)^2+a とする。 (1)f(x)を t=x+1/x の式で表せ。 (2)(1)のtの式をg(t)として、g(t)=0が 実数の解を持つaの範囲を求める。

  • 二次関数

    こんばんは。高校1年生です。 よろしくお願いいたします。 二次関数y=ax^2+bx+cのグラフとx軸の共有点の個数は、二次方程式ax^2+bx+c=0の異なる実数解の個数に等しい。 この個数はD=b^2-4acの符号によって判断できる。 なぜD=b^2-4acを使うことによって個数がわかるのでしょうか。 D=b^2-4acが何なのかよくわかりません。 参考になるサイトなどありましたら教えてください。 よろしくお願いいたします。

  • 数I 二次関数

    分からないとこが有ったので質問させていただきます。 数Iの二次関数の範囲です。 二次方程式x^2+(k-1)x-2k-6=0が異なる2つの正の解をもつような定数kの値の範囲を求めよ。 というような問題なんですけど、異なる正の解だから、b^2-4ac>0に代入して、kを求めようとしたんですけど、 (k-1)^2-4(-2k-6)>0 k^2-2k+1+8k+24>0 k^2+6k+25>0 で、因数分解がこのままでは無理なので解の公式つかって出そうと思ったら、 √の部分が合計でマイナスになっちゃったんですよ。 kの値じゃなくて、xならグラフにしたらx軸と触れ合っていない、ってことだと分かるんですが、 この場合異なる正の解をもつようなってかいてるし、こういう時はどうしたら良いですか? もしかしてそれまでの計算とか、解釈がまちがってるんですかね・・? これ以上自分で考えても余計ごちゃごちゃしてきますので、質問させてもらいました。 なるべく分かりやすく教えてくれたら嬉しいです。