• ベストアンサー

公理と定義の違い

boisewebの回答

  • boiseweb
  • ベストアンサー率52% (57/109)
回答No.9

なるほど,やっとalice_44さんの主張の意味が分かりました.同時に,alice_44さんと私の議論が完全にすれ違いだったことも認識できました. No.6の舌の根の乾かぬうちに投稿するのは気が引けますが,すれ違いの原因についての私の見解を記しておくことは,後々この質問を参照する方々のために重要と思いますので,あえて記します. alice_44さんが念頭に置く「定義」というのは,「体の定義」とか「ベクトル空間の定義」のような,そもそもの体系の構築という意味での「定義」なのですね. そのことを指して「(公理主義的数学の立場では)数学的体系の定義は公理の集合(公理系)を設定することでなされる」と言うのなら,それは違和感がありませんし,数学の専門家の考えとも一致します. ただ,そのことだけを根拠に「定義とは公理の集合である」と断言するのは,いくらなんでも勇み足というものでしょう. 数学における「定義」という語の使われ方は,体系の構築だけではありません.すでに構築された体系の内部での記号や用語の導入,あるいは「f(x) を x^2+x+1 とする」のような一時的な記号の置き換えもやはり「定義」です.そして,これらは体系の構築としての「定義」とは区別されるべきものです. 一般の数学では,むしろ,こちらの意味で「定義」という語を頻繁に用います.私がNo.4で言及したのはこちらの意味での「定義」です. さて,miki_riseさんが挙げた例 (a) 1^0=1 (b) 2乗して-1になるのを i とする (c) f(x) を x^2+x+1 とする (d) 「対角線が直角に交わる平行四辺形を菱形という」(←修正済み) は, (1) (公理主義的立場での)体系の構築のための公理,公理系,あるいは定義 (2) (すでに構築された体系の内部での)用語や記号の導入のための定義,あるいは,一時的な記号の置き換えのための定義 のどちらの文脈で議論されるべきでしょうか.私はすべて(2)だと判断します.そして,(2)の意味での「定義」を説明するにあたって「定義とは公理の集合」という説を持ち出すのは,適切とは思えません(数学基礎論のスタンダードさえも外れています). 「定義とは公理の集合」という説明で押すのなら,例(a)(b)(c)(d)には触れないで,たとえば「ベクトル空間の定義」のような,ふさわしい例を新たに提示して,独自に論を展開すべきだったと思います(それがmiki_riseさんの質問への適切な回答かどうかはともかく).

miki_rise
質問者

お礼

この質問は締め切りました。

関連するQ&A

  • 公理と定義の違いについて

    公理と定義の違いについては過去の質問でもあったようななかったような気がしますが... 「公理」: 命題として意味を与えるもの、又は 証明できない命題を真と仮定してできた命題 「定義」: 対象に意味を与えるもの というような理解でいいのでしょうか? どうもそれでは不十分だと思うので、もっとスッキリする理解の仕方がほしいと思います

  • 公理と定義はどうちがうのでしょうか?

    公理とは「仮定」のことです。 「仮定」とは「仮に定めたもの」です。 「仮に定めたもの」とは「仮に定義したもの」です。 「仮に定義すること」(公理)と「定義すること」(定義)は同じなのではないのでしょうか? 定義と公理のちがいは何でしょうか? 例えば行列のかけ算は縦と横を掛けて足しますけど、 それは定義です。 しかし、それを公理と呼んではいけないのでしょうか? また、たとえば分配法則は公理ですが、これを定義と呼んではいけないのでしょうか?

  • ペアノ公理ってなに?

    ペアノ公理を今日大学で習ったんですが、 左辺に二乗がないのにいきなり二乗が出てきてまったく理解できませんでした。ペアノ公理わかりやすく説明してくださる方いらしゃったら教えてください。基本から教えていただけるとありがたいです。

  • ペアノの公理の5番目の公理(いわゆる数学的帰納法)

    ペアノの公理の5番目の公理(いわゆる数学的帰納法の原理)について、 なぜこれが自然数の定義に必要なのか気になって、考えたり調べたりしています。 (つまり、1~4の公理だけでは何が不十分なのかについてです) そんな中、自然数の加法を定義するときに公理5が必要であるということを聞きました。自然数の加法を定義するときに公理5が必要な理由について、 ご教示、またはアドバイスいただけないでしょうか。 もうすこし具体的には、 N=(N,S,0) S:successorの写像 において、以下のように加法(二項演算a)を定義するとき (i) a(x,0) = x (ii) a(x,S(y)) = S(a(x,y)) この(ii)の定義の際に必要だと思いますが、 どのように第五公理が効いているのかが理解できていません。

  • 【ZFC】置換公理の定義の統合【置換公理】

    【ZFC】置換公理の定義の統合【置換公理】 ZFC公理系の置換公理に就いての質問です。 ZFCの公理を見渡すと、置換公理と、分出公理は、複数のパラメタを取る事が知られて(しかも、分出公理は置換公理に拠って導く事が出来ます)います。 しかし、ネットを見回して診ると、関係式(φ,P,F etc.)が、複数のパラメタを採る物と、採らない物が在ります。 複数のパラメタは考慮されずに記述された置換公理 ttp://okwave.jp/qa/q2959778.html ttp://de.wikipedia.org/wiki/Zermelo-Fraenkel-Mengenlehre ↑9. ttp://ufcpp.net/study/set/axiom.html ttp://blog.livedoor.jp/calc/archives/50760599.html# ttp://www.geocities.co.jp/Technopolis/9587/tips/zahlen.html 複数のパラメタを考慮して記述された置換公理 ttp://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory ↑6. ttp://en.wikipedia.org/wiki/Axiom_schema_of_replacement ttp://pauli.isc.chubu.ac.jp/~fuchino/tmp/kikaku03-proj.pdf ↑10頁 ttp://page.mi.fu-berlin.de/geschke/ModelleMengenlehreV2/MMskriptV2.pdf ↑1頁(7) 公理は1ヶなのに、上記のサイトを見廻して診ると、まるで2つの記述法が在る様な印象を受けます。もしも、統合可能な場合、どの様な記述に成るのでしょうか。 「複数のパラメタは考慮されずに記述された置換公理」を自分なりに記述した物 ∀x ' ∀X ( x ' ∈ X ⇒ ∀Y_0 ∀Y_1 ( F( X , Y_0 ) ∧ F( X , Y_1 ) ⇒ Y_0 = Y_1 ) ⇒ ∃Y ∀y ( y ∈ Y ⇔ ∃x ( x ∈ X ∧ F( x , y ) ) ) 「複数のパラメタを考慮して記述された置換公理」を自分なりに記述した物( ∧ , ⇒ 等かなりいい加減です) ∀y_1 … ∀y_n ∀A ( ∀x ( x ∈ A ⇒ ∃1y ( f ( x , y , y_0 , … , y_n ) ) ) ) ⇒ ∃Y ∀y ( y ∈ Y ⇔ ∃x ( x ∈ A ∧ f ( x , y , y_0 , … , y_n ) ) )

  • モデルによる平行線公理証明可能性の否定的解決

    ある本によると「ユークリッドの第五公理(平行線公理)が他の4公理から証明できるか?という問題はその4公理を満たし第五公理だけを満たさないモデルを作ることにより否定的に解決された。」と書いてあります。なぜそのような「モデル」の存在が他の公理からの証明不可能性という結論につながるのか、その論理が理解できません。また「証明された。」でなく「否定的に解決された。」となっていいるけど、この二つはどう違うのでしょうか?中学生にも理解できるよう教えてください。

  • ZF公理系に「積集合の公理」がないのは何故ですか?

    (I)外延公理   ∀z(z∈x <-> z∈y)-> x=y (II)対公理    ∃z∀u(u∈z <-> u=x ∨u=y) (III)和集合公理  ∃y∀z(z∈y <-> ∃u(u∈x∧z∈u)) (IV)ベキ集合公理 ∃y∀z(z∈y <-> z⊆x) (V)空集合公理  ∃x∀y¬(y∈x) (VI)無限公理   ∃x(Φ∈z∧∀y(y∈x ー> y∪{y}∈x)) (VII)置換公理   ∀x∀y∀z(φ(x,y)∧φ(x,z)->y=z) -> ∃v∀y(y∈v <-> ∃x(x∈u∧φ(x,y))) (VIII)正則性公理  x≠Φ ー> ∃y(y∈x ∧ y∩x=Φ) このように和集合の公理はあるのに何故積集合の公理はないのでしょうか? 他から導けるのでしょうか?

  • (無限小解析)自然延長の定義と公理D(解の公理)について解説ください

    キースラー著の無限小解析からです。 変数及び定数に実関数を何回か施して得られる式を項という。 x,c,x+c,f(x),g(c,x,f(y))はどれも項である。 項の正確な定義は (i) 変数は項である。 (ii) 実定数は項である (iii) x1,x2,…xnが項でfがn変数実関数ならf(x1,x2,…,xn)は項である。 変数を含まない項を定数項という。 方程式とはa=bの形の式である。但しa,bは項である。不等式とは a≦b,a<b,a≠bの内のどれか一つの形の式である。 二つの項の間の方程式及び不等式を合わせて式と言う。式の有限集合を式系という。 式系Sの解とはnこの定数組(c1,c2,…,cn)でSの各式の中の全てのxiにciを代入した時,得られる式の両辺が定義されしかもその時が全て正しくなるようなものを言う。 という前置きで 公理A Rは完備順序体である。 公理B R*はRの真拡大順序体である。 公理C(関数の公理)任意のn変数実関数fに対し,fの自然延長と呼ばれるn変数超実関数f*が対応する。特にR*の体演算はRの体演算の自然延長である。 公理D(解の公理)二つの式系がちょうど同じ実解を持つならばそれらはちょうど同じ超実解を持つ。 と記載されてます。 例: f(x)=√xの式系Sはx=y^2,y≧0である。 ここで公理Cと公理Dがイマイチよくわかりません。 まず公理CではRからR*への埋め込みの事をR*ではf*と表記しようという事を言っているのでしょうか? 例えばhをRからR*への f(x)=x^2なら(h(x))^2の事をf*(x)という意味でしょうか? 次に公理Dでの二つの式系がちょうど同じ解を持つとは {(x,y)∈R^2;y=f(x)}={(x,y)∈R^2;y=g(x)}というような事を言っているのでしょうか?

  • 再帰的定義と体系の強さ

    再質問になります、ご容赦ください。 [ゲーデルに挑む 田中一之]のp152の記述に、形式的な定義は略記に限るものとし x^0=1 x^(y+1)=x^y・x のような再帰的な(略記でない)定義で論理式を形式体系に付け加えることは公理を増やすことに他ならず体系の強さが変わってしまう可能性がある とあるのですが、これはどういうことでしょうか。 つまり、再帰的定義は記号の使い方を定めているだけであり(上の例であれば、関数記号^の記号としての使い方)、この定義によって初めてその記号が登場してくるならば、それによって体系内で何か新しいことができるようになったりはしないと思うですが...。すなわち定義を追加するだけでは、公理を増やすことにはならず体系の強さも変わらないと思うのです(もちろん、定義するだけでなく、定義した記号に関する公理を追加すれば話は別ですが)。 この方面に詳しい方いらっしゃいましたらお助け下さい、よろしくお願いします。

  • 導関数の定義と微分係数の定義の公式の違いが分かりません(T_T)

    導関数の定義と微分係数の定義の公式の違いが分かりません(T_T) χとaの違いしか理解できません。 χ(導関数)のときは 計算の途中でf(χ)~ってしなくていいってことですか?