• ベストアンサー

立体V = {(x,y,z)|x^2 + y^2 <= z <= 1}

立体V = {(x,y,z)|x^2 + y^2 <= z <= 1}の体積|V|を求めよ。 という問題で、まず、答えを見ずに自分で x^2 + y^2 <= 1 x^2 <= 1 - y^2 x <= ±√(1 - y^2) ∫∫∫_V dxdydz =∫[0,1]dz 2*∫[0,1]dy 2*∫[0,√(1-y^2)] (x^2 + y^2) dx =π/2. …と計算しました。本の答えは |V| = ∫[0,1] (∫∫_(x^2 + y^2 <= z) 1 dx dy) dz = ∫[0,1]πz dz =π/2. …となっています。これでは肝心の ∫∫_(x^2 + y^2 <= z) 1 dx dy の部分が分かりません。 その結果が πZ になっているので どこかに Z が紛れ込んでるはずですがどこか分かりません。 この式を ∫[a,b] dx ∫[c,d] 1 dy の形で教えて下さい。 お願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • OKXavier
  • ベストアンサー率53% (135/254)
回答No.1

>∫[a,b] dx ∫[c,d] 1 dy >の形で教えて下さい。 4∫[0,√z]dy∫[0,√(z-y^2)]dx x=rcosθ y=rsinθ に変換すれば、 4∫[0,π/2]dθ∫[0,r]r^3dr

futureworld
質問者

お礼

今、やっと計算が終わりました。 ぴったり合いました。 √(z-y^2)の方は質問前に試してみたのですが √(z)の方は考え付かなかったです。 ありがとうございました!

関連するQ&A

  • V = {(x,y,z) | x^2 + y^2 + z^2 <= a

    V = {(x,y,z) | x^2 + y^2 + z^2 <= a^2, x^2 + y^2 <= b^2} (a>b>0)の体積|V| 次の立体V = {(x,y,z) | x^2 + y^2 + z^2 <= a^2, x^2 + y^2 <= b^2} (a>b>0)の体積|V|を求めよ、 という問題で答えは |V| = 2*∫∫_[x^2 + y^2 <= b^2] √(a^2 - x^2 - y^2) dx dy = (4π/3)(a^3 - √{(a^2 - b^2)^3}). となっています。 この問題の途中で、これ以上積分が出来そうにない部分が出てきますので、どうか助けてください。自分のやったところまで書きますと |V| = 2*2*∫[0,b] dx 2*∫[0,√(b^2 - x^2)] √(a^2 - x^2 - y^2) dy = 8*∫[0,b] [(1/2){y√(a^2 - x^2 - y^2) + (a^2 - x^2) arcsin(y√(a^2 - x^2))}]_[0,√(b^2 - x^2)] = 4*∫[0,b] √(b^2 - x^2)√(a^2 - b^2) + (a^2 - x^2) arcsin{√(b^2 - x^2)/√(a^2 - x^2)} dx …ここが、「これ以上積分が出来そうにない部分」です(実際、計算機でもこれ以上は計算してくれません)。 ただ、本に載っている例の値 a=1, b=1/2 を入力すると 1.46809 という答えになり、本の答え (4π/3)(a^3 - √{(a^2 - b^2)^3}) に a=1, b=1/2 を入力した場合とまったく同じ答えになります。 さて、手計算で (4π/3)(a^3 - √{(a^2 - b^2)^3}) を求めるにはどうすればよいのでしょうか?

  • (V: |x|+|y|+|z| <= 1)と(V: x+y+z <=

    (V: |x|+|y|+|z| <= 1)と(V: x+y+z <= 1; x>=0, y>=0, z>=0)は同じ意味? 次の多重積分を計算せよ。 ∫∫∫_V x dx dy dz V: |x|+|y|+|z| <= 1 という問題で、答えが 「x座標がxでyz平面に並行な平面によるVの切り口 |y|+|z| <= 1-|x| の面積は S(x) = 2(1-|x|)^2 で、 積分は∫[-1,1] x S(x) dx に等しく、被積分関数は奇。よって0。」となっています。 そこで質問ですが、 V: |x|+|y|+|z| <= 1 は V: x+y+z <= 1 x>=0, y>=0, z>=0 とまったく同じ意味でしょうか? 他の本に後者の形で定義された問題があったので応用できないかと考えています。

  • 合成関数の微分

    z=f(x、y) u=x+y v=x-yのとき、Z[u]、Z[v]をf[x]、f[y]を用いて表せっていう問題です。 z[u]=(dz/dx)(dx/du)+(dz/dy)(dy/du) x=u+v/2 だからdx/du=1/2 y=u=v/2 だからdy/du=1/2 よってz[u]=dz/dx(1/2)+dz/dy(1/2)      =1/2f[x]+1/2f[y] あってますか??答えは一致したんですけど、dz/dxをf[x]、dz/dyをf[y]にしてもいいんでしょうか?? 間違ってたら教えてください!!!

  • z=(-x/y)*(dy/dx) を dz/dxで微分すると?

    z=(-x/y)*(dy/dx) を dz/dxで微分すると? 微分に関して分らない問題があります。 あるテキストの解法の途中で、 「z=(-x/y)*(dy/dx) ⇒ dz/dxで微分 ⇒ dz/dx=(2/y)-(2x/y^2)*(dy/dx)」 となっているのですが、この原理について、調べてみてもなかなか見つかりません。 どなたか原理の分かる方おられませんでしょうか。

  • 3重積分を用いて体積を求める

    x^2+y^2<=r^2, y^2+z^2<=r^2, z^2+x^2<=r^2 をみたす点全体がなす立体の体積を求めたいのですが(rはある定数)、これを\int \int \int dx dy dz の形にまとめて書けますか?書ける場合は具体的な式を教えてください、お願いします。

  • 全微分方程式の変数分離

    斉次全微分方程式 P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0 をzが変数分離された式 P'(u,v)du+Q'(u,v)dv+dz/z=0 となることを示したいのですが、 まずx=uz,y=vzと置くと dx/dz=z*du/dz+u dy/dz=z*dv/dz+v となりますよね。 これを代入して色々やっているのですが、 どうやっても目的の式にもっていくことが出来ません…。 どなたかやりかただけでもお願いします。

  • 微分方程式

    dy/dx = f(y/x) の形の微分方程式で y/x = z すなわち y=xz とおき、未知数関数yからzに変換すると dy/dx = z + x(dz/dx)・・・(1) である。 なぜ(1)の式になるのでしょうか? 教えて下さい。

  • 陰関数と偏微分

    1)z^x=y^zで表される陰関数zx,zyを求める上でどうすればいいのか分かりません。 2)以前x^2+y^2+z^2+2x+2y+2z=0で表される陰関数のzxを求めなさいという問題での疑問を出したところz^2をxで偏微分したときに2・z・zx 、y^2をxで偏微分すると0になると返ってきたのですが、どうして0になるのでしょうか? 2y・yxとなるならわかるのですが。またz=の形にしてからという答えもあったのですが、それは(z+1)^2に平方完成してから√にしてやれって事でしょうか?答えがぜんぜんちがったものですから。 3)x^2+y^2+z^2=a^2,x^2+y^2=2ax で陰関数のdy/dx,dz/dxをもとめさせるもんだいがあったのですが、dy/dxをもとめるうえで、fyとfxをもとめたわけなんですが、後の式を使えばでますが、前の式は何に使うのでしょう。dz/dxをもとめるうえで、fz、fxを求めようとしたのですが、fz=2z fy=2yとやってはいけないのですか?しかも答えにはaがでてきました。

  • x^2+y^2=aをxについて微分すると

    陰関数の微分で2x+2ydy/dx=0からdy/dx=-x/yという計算は一次方程式の解法を知っていれば計算できてしまいますが、最後の式を微分方程式と見た場合、その答えはx^2+y^2=c(cは積分定数)となるのでしょうか。これが正しいとしても計算の仕方が分からないのですが・・・よろしくお願いいたします。

  • 過程の計算を教えて下さい!

    dy/dz =(dy/dx)(dx/dz) ={(x-1)^(-1)}^(n+1)・1 =(-1)^(n+1)*(n+1)!/(x-1)^(n+2) =(-1)^(n+1)*(n+1)! /(z-1)^(n+2) よりdy/dz=(-1)^(n+1)*(n+1)!/(z-1)^(n+2) の式のyにy={(x-1)^(-1)}^(n) (※x=z)を代入して整理したら (d/dz)^(n+1){1/(z-1)}=(n+1)!(-1)^(n+1)/(z-1)^(n+2)と導けるでしょうか? 仮に導ける場合は導くまでの過程の計算をわかりやすく教えて下さい。