• ベストアンサー
  • 困ってます

自然落下とエネルギー保存則の問題について

地面からの高さHの建物から水平方向にV0でボールを投げた場合を考え、ボールを質量mの質点としてとらえる。(働く力は重力のみ)またエネルギー保存則から落下直前の速度を求め運動方程式で求められた答えと一致することを確かめよ、という問題なのですが  とりあえず、・地上をy=0 ・y軸を鉛直上向きに取る ・ボールを放した瞬間をt=0 と取って Fy=-mg と Fy=m*ay を代入して m*ay=-mg 物理的条件として (1)t=0のときy=H (2)t=0のときVy=0 運動方程式を求めて y(t)=-1/2gt^2+C1t+C2 Vy(t)=-gt と求めてみたんですけど、この後エネルギー保存則を使うらしいんですが取り方が参考書とか見てもうまく理解できないので教えてもらえないでしょうか。 また途中の考えとかも間違えていたりしたらズバズバと言ってくださいお願いします

noname#156525
noname#156525

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数2
  • 閲覧数189
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • xs200
  • ベストアンサー率47% (559/1173)

高さHの地点をy=0にした方が式が簡単になると思います。 で、鉛直方向にy軸をとれば; (力が働いているのは鉛直方向だけなので水平方向は考えなくてもいいのですが、たいていの問題では使うので) Vx=v0 Vy=gt x=v0t y=1/2gt^2 あとは位置エネルギーはEp=mgh, 運動エネルギーはEk=1/2mv^2で位置エネルギーと運動エネルギーの和は一定なのですから簡単だと思います。 v=gt, y=1/2gt^2より v^2=2gyとしておいて y=0の時 Ep+Ek=mgH+0=mgH 着地直前では Ep+Ek=0+1/2mv^2=1/2m(2gH)=mgH 着地までの途中でも当然成り立ちます。 エネルギー保存則と言った時点でtもvも消えてしまうので、要は着地直前のvを求めよという問題にしか見えません。物理はどうすれば式が簡単になるかを考えるのが大事です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

アドバイスを参考にして自分でも考えてみようと思います。細かい説明の入った回答してくださりありがとうございました。

その他の回答 (1)

  • 回答No.1

まず与えられた条件からC1,C2を定め、y=0となる時刻を求めて、 その時刻をVy(t)に代入してy=0になったときの速度を求めてください。 次に、水平方向は等速運動ですから、y=0の位置を位置エネルギーの原点とすれば、y=0になったときには位置のエネルギーが全て縦方向の運動の運動エネルギーになるので、ここでエネルギー保存則を使って速さを求めてください。 こうして求めた二つの速さを比較します。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ヒントを元に頑張ってみます。 回答ありがとうございます!

関連するQ&A

  • 力学的エネルギー保存

    ご覧頂きありがとうございます。 力学的エネルギー保存の問題だと思うのですがよくわからず困っています。 質量mのボールを高さhまで持ち上げてそっと離す、その後の運動について答えてください。 なお、ボールを離した位置を原点として鉛直下向きにx軸をとる。重力加速度をgとして空気抵抗は無視する。 (1)ボールの運動方程式を立ててください 下向きに軸をとるのでmx''=mg (2)運動方程式を解いてボールの位置と速さを時間の関数として表してください。 v=gt+C 初期条件よりv=gt x=1/2gt^2+C 初期条件よりx=1/2gt^2+h (3)ボールが座標xの高さまで落下したとき速さvであるとして力学的エネルギー保存を表す式を立ててください 1/2mv^2+mgx=mgh (4) (1)の運動方程式に仕事の定義を当てはめて(3)の式になることを示してください。 仕事の定義ってW=Fxですか?よく分かりません。 (5) (2)から時間変数を除去することで(3)の式になることを示してください。 v=gtよりx=v^2/(2g)+h (3)から遠くかけ離れてしまいました。 (6) (3)の式を微分方程式とみなし、これを解いて物体の位置と速度を時間の変数として表してください。またそれが(2)と一致することを示してください。 とても困っています、よろしくお願いします

  • エネルギー保存則を使わずに解くには

    こんにちは、宜しくお願いします。 添付の左図をご覧下さい。質量1kgの棒がL字型のガイドレールに収まっており、 静止状態から開放されて、A点は左にG点(重心)は下方に動いております。 θは鉛直と棒がなす角です。 θが30度の時の棒の角速度を求めよ、という問題です。 エネルギー保存の法則を使えば、重心を使った位置エネルギーの減少と運動エネルギーの増加分が合わせてゼロになることを使って、角速度を求めることができます。それが模範解答なのでもあります。 ここで、エネルギー保存則を使わずに、運動方程式を立てて加速度を求め、速度、角速度というように順次求めてみたいのですが、運動方程式が立てずにおります。添付の右図のように、掛かっていると思われる力を示してみました。何を悩んでいるかと申しますと、重心は下方向にしかすすみませんので、Y軸方向への運動方程式は ma = mg - N とできますが、X軸方向はどうでしょうか。重心はX軸方向に動かないのに、重心が壁から受ける力Rに拮抗する力が見当たりません・・・ いかがでしょうか。エネルギー保存則を使わずに、運動方程式を立てて解く方法をご教示頂きたく、どうぞ宜しくお願いします。

  • 抵抗がある場合の自由落下問題を教えてください

    空気中を質量mの質点が自由落下する場合に、鉛直下方に働く重力(mg)と、速度に比例した空気抵抗(-cv:cは比例定数)が働くものとする。 1.鉛直下方にx軸の向きをとり、質点の運動方程式を書け。 2.t=0での速さを0とし、運動方程式を解いて、時刻tにおける速度v(t)を求めよ。 3.質点の終端速度 v∞=lim t→∞ v(t)を求めよ。 4.空気抵抗が無くなる極限c→0において、速度はgtになることを示せ。 という問題が分からないです。 合ってるか分からないですが図を書いてみました。図の右側にあるのは3.のlimの表記です。解答例と答えを教えてください。 特に4.が分からなくて困ってます。私が出した1-3の答えは 1. ma = mg - cv 2. v = (mg/c)(1 - exp(-ct/m)) 3. v∞ = mg/c です。

  • ~運動方程式→エネルギーand運動量保存則?~

    僕は大学入試に向けてちょっとだけ頑張ってる受験生なのですが、(笑) 運動方程式等に関して質問があります。 ある先生に聞いた話なんですけど、 『エネルギー保存則も運動量保存則も運動方程式が元であり、変形したり積分したりすれば運動方程式から導くことが出来る』んですよね?? だから気になって、ホントかな~と思っていろいろ変形してたら   ma=F   m(Δv/Δt)=F   mΔv=FΔt 『おぉ、これは確かに力積とか運動量保存則っぽい!』 ってなったんですけど、これは正解でしょうか? また、エネルギー保存則はどうやって導くのでしょうか? これはまったくわからないんです!どなたか教えてください。 よろしくお願いします。m(_ _)m

  • 力学的エネルギー保存則?

    高3です 力学的エネルギー保存則についてあまり理解ができてません・・・。 使い方はなんとなくわかり、 摩擦、抵抗が無いときは力学的エネルギー保存則が適応できて、運動エネルギーと位置エネルギーの和は一定である というものを利用して問題が解ける。という風に丸暗記というか操作の方法だけ覚えています。 なぜか・・・ というのがいまいち分かりません。 例えば高さHのところから高さhまでの斜面に質量mの玉を転がしたら、mgH=1/2 mv^2+mgh でhの時点の速度が求まる。まぁmは結局消えるから速さは質量によらないということもここから分かりますね・・・。 一応知識としてはこれくらいは分かっているつもりなのですが、「エネルギー保存則=位置エネルギー+運動エネルギー」がなぜそうなのかというのがいまいち分かりません。 なんか2つが別々のようにおもえるのに足すということがあまり理解できないというか・・・。 2つの和が一定ということは、位置エネルギーが変化したら運動エネルギーが減るってことですか? 位置が高くなったらその分運動エネルギーが減る?? そもそも「運動エネルギー」とは「動いている物体は他の物体に力を及ぼして仕事をすることができるのでエネルギーを持っている」と言え、それを運動エネルギーといっているのですよね。 位置が高くなったらエネルギーも蓄えられそうですが、これって、斜面を転がっていてボールのスピードが加速してる・・・ けど上り坂になる(位置エネルギーがあがる)と玉のスピード(運動エネルギー)が下がる。 というイメージでいいのでしょうか? 教科書にも定義みたいのことしか書いてなく、イメージがつかめないので勝手に想像してみました。こういう理解でいいのでしょうか?アドバイスおねがいします・・・ m(。。m

  • 物理学の問題です

    (問)高さhの屋上から質量mの質点を水平方向に初速V0で投げた (1)地上に原点をとり水平方向にx軸、鉛直上向きをy軸として、質点の運動方程式と初期条件を書け。 (2)運動方程式を解いて、初期条件を満たす解を求めよ。 (3)落下点を求めよ。 (4)落下点における速度Vのx成分Vx、y成分Vyを求めよ。 と言う問題です これを自力で解いてみたところ (1)の運動方程式は V0+gt  (3)の落下点は V0√(2h/g) (4)のVx=V0,Vy=gt とそれぞれなったのですが、この解答は合っていますか? また、(1)(2)の初期条件を求める問題が分かりません。 どなたか教えていただけないでしょうか?お願いします。

  • 力学的エネルギーの問題が分からなくて困ってます。

    今大学一年生です。 物理学1という授業内で出された宿題が分からなくて困ってます。 解答例を教えてください。(計算過程も欲しいです) よろしくお願いします。 質量Mの質点が高さ3hの位置より滑らかな斜面を滑り降り、x=0で高さhより水平方向に速さvで飛び出した。この時刻をt=0として、以下の問いに答えよ。ただし、鉛直方向をy方向、水平方向をx方向とする。 (a)速さvはいくらか。 (b)飛び出した後の運動方程式を書け。 (c)運動方程式を解いて、x,y方向の速度を時間tの関数として表せ。 (d)地上に落下する直前の速さを求めよ。 (e)地上に落下する直前のy方向の速度を求めよ。

  • 斜面を物体が下る問題について(エネルギー問題)

    初速度0で高さhのところから手を離し、最初は摩擦力のない斜面をくだり、そのまま摩擦力のない水平面をすべり、次に高さ1/2hの所(C点とする)までは摩擦力のない斜面を上る。C点での速さを求めなさいという問題があります。 この場合求める速度とは、斜面に平行な速度なのでしょうか? この場合の力学的エネルギー保存とは、 また m g h =1/2 m vの二乗 + 1/2 m g h という式はどんな運動方程式を立てて、それに速度成分をかけて積分してでてきた式なんでしょうか?

  • 至急! 物理学の問題について

    以下の問題なのですが、絶対に間違えられないので、私の解答の正誤を確認していただきたいのです… 1. 滑車にかけた質量の無視できる糸に、質量がm₁とm₂の2つの物体を吊るした。ここでm₁>m₂とする。それぞれの物体の加速度をa,糸の張力をT,重力加速度をgとし、滑車の摩擦は無視できるものとして、以下の問に答えなさい。 (1)物体m₁についての運動方程式を書きなさい。 …(1) (2)物体m₂についての運動方程式を書きなさい。 …(2) (3)物体の加速度の大きさaをm₁,m₂,gで表しなさい。 …(3) (4)糸の張力Tをm₁,m₂,gで表しなさい。 …(4) 私の解答 (1) m₁a=m₁g-T (2) m₂a=T-m₂g (3) a=(m₁-m₂/m₁+m₂)g (4) T=m₂(a+g)=m₂{(m₁-m₂/m₁+m₂)g+g}=m₂(2m₁/m₁+m₂)g ※分数表現が“/”のため、変に括弧がついていますが、分数×gと捉えてください。 2. 次の文章を読んで問に答えよ。 高さh₀のビルの上からボールを鉛直下方に投げた。空気の抵抗は考えないとき、初速度をv₀、重力加速度をgとするとt秒後のボールの速度はv=[ (5) ]となる。このときボールの落下した距離Sは、S=[ (6) ]と表される。次にエネルギーについて考える。ボールの質量をmとする。地面を基準にしたビルの上での位置エネルギーUは、m,g,h₀を使ってU=[ (7) ]と表される。このとき初速度v₀でボールを下方に投げたので、運動エネルギーKはK=[ (8) ]となる。このふたつの式からビルの上での力学的エネルギーEはE=[ (9) ]と表される。次に、地面に衝突する直前のボールの速度をveとする。このとき位置エネルギーU=0なので、衝突直前の力学的エネルギーEはveを使ってE=[ (10) ]となる。また、v₀=1m/s,g=9.8m/s²,h₀=10mとし、ボールの高さがh=5mに達したときのボールの速度vは[ (11) ]となる。 私の解答 (5) v₀+gt (6) 1/2gt² (7) mgh₀ (8) 1/2mv₀² (9) 1/2mv₀²+mgh₀ (10) 1/2mv₀²+mgh₀=1/2mve²+mg0 ちなみに、(11)がよくわかりません。 長くなってしまいましたが、解答の確認と(11)の答え(解説)を教えてください。 どうか、よろしくお願いします(>_<)

  • 至急! 物理学の問題について

    以下の問題なのですが、絶対に間違えられないので、私の解答の正誤を確認していただきたいのです… 1. 滑車にかけた質量の無視できる糸に、質量がm₁とm₂の2つの物体を吊るした。ここでm₁>m₂とする。それぞれの物体の加速度をa,糸の張力をT,重力加速度をgとし、滑車の摩擦は無視できるものとして、以下の問に答えなさい。 (1)物体m₁についての運動方程式を書きなさい。 …(1) (2)物体m₂についての運動方程式を書きなさい。 …(2) (3)物体の加速度の大きさaをm₁,m₂,gで表しなさい。 …(3) (4)糸の張力Tをm₁,m₂,gで表しなさい。 …(4) 私の解答 (1) m₁a=m₁g-T (2) m₂a=T-m₂g (3) a=(m₁-m₂/m₁+m₂)g (4) T=m₂(a+g)=m₂{(m₁-m₂/m₁+m₂)g+g}=m₂(2m₁/m₁+m₂)g ※分数表現が“/”のため、変に括弧がついていますが、分数×gと捉えてください。 2. 次の文章を読んで問に答えよ。 高さh₀のビルの上からボールを鉛直下方に投げた。空気の抵抗は考えないとき、初速度をv₀、重力加速度をgとするとt秒後のボールの速度はv=[ (5) ]となる。このときボールの落下した距離Sは、S=[ (6) ]と表される。次にエネルギーについて考える。ボールの質量をmとする。地面を基準にしたビルの上での位置エネルギーUは、m,g,h₀を使ってU=[ (7) ]と表される。このとき初速度v₀でボールを下方に投げたので、運動エネルギーKはK=[ (8) ]となる。このふたつの式からビルの上での力学的エネルギーEはE=[ (9) ]と表される。次に、地面に衝突する直前のボールの速度をveとする。このとき位置エネルギーU=0なので、衝突直前の力学的エネルギーEはveを使ってE=[ (10) ]となる。また、v₀=1m/s,g=9.8m/s²,h₀=10mとし、ボールの高さがh=5mに達したときのボールの速度vは[ (11) ]となる。 私の解答 (5) v₀+gt (6) 1/2gt² (7) mgh₀ (8) 1/2mv₀² (9) 1/2mv₀²+mgh₀ (10) 1/2mv₀²+mgh₀=1/2mve²+mg0 ちなみに、(11)がよくわかりません。 長くなってしまいましたが、解答の確認と(11)の答え(解説)を教えてください。 どうか、よろしくお願いします(>_<)