自然数の組の個数は?

このQ&Aのポイント
  • 1~100以下の自然数の中から、どの差も5以上である5つの自然数の組を選ぶ場合の数は、30,872,016通りです。
  • 1~100以下の自然数の中から、どの差も5以上である5つの自然数の組を選ぶ場合の数は、30,872,016通りです。
  • 1~100以下の自然数の中から、どの差も5以上である5つの自然数の組を選ぶ場合の数は、30,872,016通りです。
回答を見る
  • ベストアンサー

1~100以下の自然数の中から、どの差も5以上である5つの自然数の組の個数は?

さっそく質問させて頂きます。 「1以上10以下の自然数の中から、どの差も2以上である、3つの異なる自然数の組を選ぶ場合の数は何通りあるか」 という問題がありまして、自分なりのこの問題の解き方は、 まず1~10の中からどの差も2以上になるような、最も大きい組 (6,8,10)選び、(6,7+1,8+2)と置き換えて、 結果8C3=56通り、とういことで理解できました。 今度は、タイトルのように、「1以上100以下の自然数の中から、どの差も5以上である、5つの異なる自然数の組を選ぶ場合の数は何通りあるか」という問題を自分で作りまして、「1以上10以下」の問題と同様な考え方で解きました。 まず1~100の中からどの差も5以上となるような、最も大きい組(80,85,90,95,100)を (80,81+4,82+8,83+12,84+16)と置き換えて 結果84C5=30,872,016通りとなりました。 これで、答えと考え方は合っていますでしょうか? お分かり方、どうかお教え願います。

質問者が選んだベストアンサー

  • ベストアンサー
  • nag0720
  • ベストアンサー率58% (1093/1860)
回答No.1

合ってます。

ma-cyan369
質問者

お礼

単刀直入にご回答いただき、助かりました。 有難う御座いました。

関連するQ&A

  • 【高校数学】順列 等式を満たす自然数の組の個数

    質問です。 Q)等式 x+2y+3z=11 を満たす自然数の組(x,y,z)は何組あるか。 z=1,z=2で場合分けできて、 答えは5組になるのですが、 そもそもなぜz=1、2で場合分けできるのかがわかりません。 そこからはわかるのですが… 解説お願いしますv

  • x以下の双子素数の個数

    素数定理から、x以下の素数の個数π(x)は(xが十分大きければ)、x/logx程度であると考える事ができます。 ここから、x自身が素数である"確率"(確率という言葉は適切ではないですが)は、1/logxと考える事ができます。 この部分には、いろいろな考え方がありますが、 例えば、x以下の自然数を取り出した時に、それが素数である確率は、π(x)/x=1/logxであり、xが十分大きければ、これをx自身が素数である"確率"と考えられるでしょう。 (x,x+2)の組が双子素数である、つまり、xとx+2が同時に素数となる"確率"は、 1/(logx)*(1/(log(x+2))≒1/(logx)^2 と考える事ができます。 すると、これを積分した、 ∫[x:2→x](1/(logx)^2))dx の値でx以下の双子素数の個数と見積もることができます。 と、考えました。ところが、 この積分で1,000,000以下の双子素数を見積もると、およそ950程度となります。(積分値を計算するソフトがないので、大雑把な値です) 一方、1,000,000以下の双子素数の個数は、1224個です。 けっこう大きな差がありますよね。1,000,000という値では小さすぎたのかな、とも思いましたが、ウィキペディアを見てみると、この辺りの話が載っていて、 x以下の双子素数の個数は、上の積分に、2Cをかけたもので見積もっています。 なお、C=Π[p>2](1-1/(p-1)^2)≒0.6601ということだそうです。 実際に、この2Cをかけた値で、1,000,000以下の双子素数の個数を見積もってみると、およそ1250個となって、確かに、実際の値と非常に近い値となって、確かに2Cをかける事に意味はありそうなのですが、 いったい、このCという値はどういう根拠がある数値なのでしょうか? あるいは、∫[x:2→x](1/(logx)^2))dxでx以下の双子素数の個数を見積もった場合、どうして実際の数より小さくなるのでしょうか? なお、厳密な(数学的な)議論である必要はありません。

  • 自然数 0×∞

    より簡単となるように、話を自然数だけに限定しました。 以下において、数はすべて自然数(0を含む)とします。 まず、等号 = を帰納的に定義します。  0 = 0  a = b ならば a + 1 = b + 1 これによって、  2 + 3 = 5 なども導けると思います。 このことは、自然数と加法を、たとえば  0 は {}  a + 1 は a ∪ {a} という集合とその操作と考えた場合、等号は両辺の集合が等しいことを意味します。 ただし、1 以外の加法は、結合法則が成立するように  a + (b + c) = (a + b) + c = a + b + c で定義します。 加法を無限回行った結果は一つしか存在しないので  1 + 1 + 1 + ... = Σ[k=1,∞]1 = ∞ と表します。 乗法は  a × b = Σ[k=1,b]a で定義します。ただし、b = 0 ならば  a × 0 = 0 とします。 以上の定義に従って計算する時、 質問1:この式は正しいですか?  1 + Σ[k=2,∞]1 = 1 + 1 + 1 + ... = Σ[k=1,∞]1 あるいは ∞ を使って  1 + ∞ = ∞ 質問2:この式は正しいですか?  0 × Σ[k=1,∞]1 = 0 あるいは ∞ を使って  0 × ∞ = 0 なお、∞ という記号に、ある加算結果を表す以上の意味はありません。 等号以外の自然数や演算の定義は、通常と同じにしたつもりです。

  • 「3桁の自然数」 →0は自然数?

    百の位、十の位、一の位のうち、いずれかは偶数であるような3桁の自然数の中で、各位の数の和が奇数であるものは幾つあるか。 模範解答 百の位、十の位、一の位のうち、1つの位だけが奇数で、他の2つの位は偶数である。 そのような場合には、次の[1]~[3]がある。 [1] 一の位が奇数、他の位が偶数のものについて 百の位は2, 4, 6, 8の4通り 十の位は0, 2, 4, 6, 8の5通り     ←0??? 一の位は1, 3, 5, 7. 9の5通り よって、4×5×5=100個 [2]  : ・・・と続くのですが、 こういう類の問題で「3桁の自然数」と言った場合、 その範囲は100~999ですか? 最上位の位以外なら0が含まれていてもいいんですか? 自然数の定義は「0を含まない」ですよね? ←確認 ですから、「3桁の自然数」と言った場合、 それぞれの位は1~9までの数で構成されるべきじゃないんですか? 特に今回は、それぞれの位が偶数か奇数かという話をしているので 各位も自然数なのかと思いました。 100や510が自然数なのは承知しています。 でも、この問題の書き方が曖昧に思えてなりません。 どうか私を納得させて次から間違えないようにさせて下さい。お願いします。

  • 自然数と整数はどちらが多いのか

    自然数と整数はどちらが多いのか 答え:その1 自然数も整数も無限にあるので、「どちらが多いとは言えない」。 答え:その2 すべての自然数とすべての整数でペアを作っていけるので、答えは「同じ数」 答え:その3 数直線上、もしくは領域図上において、自然数の領域は整数の領域の一部であるから、「整数の方が多い」 答えを自分なりに3つ考えたのですが、この中に正解はありますか? また、ないとしたら、答えは何ですか?

  • 【数学II】100以下の自然数で3でも7でも

    100以下の自然数で3でも7でも割り切れないものは全部でいくつあるか 答えは数えれば分かるんですが57個です。これを単純に数えるのではなくて、別の方法で求めることはできますか?

  • 次にあげる10個の数について、その中から任意の2つをとって作った差(>

    次にあげる10個の数について、その中から任意の2つをとって作った差(>0)の集まりを考える。たとえば、6-1=5,501-121=380 などは、この集まりに含まれる数である。 1,3,6,14,29,60,121,249,501,1003 この集まりの中に、6で割り切れる数はいくつあるか。 剰余をあつかう問題のようなのですが、解法のポイントと、答えの導き方をおしえてください。 悩んでますお願い致します。

  • x+y+z=8を満たすx,y,zの自然数の組は何通りあるか。

    x+y+z=8を満たすx,y,zの自然数の組は何通りあるか。 解答は以下の通りです。 X=x-1,Y=y-1,Z=z-1とおくと, x+y+z=8は(x-1)+(y-1)+(z-1)=5よりX+Y+Z=5 X+Y+Z=5となる負でない整数の組を数えればよいので 答えは7!/5!2!=21(通り) 「X=x-1,Y=y-1,Z=z-1とおく」と 「X+Y+Z=5となる負でない整数の組を数えればよい」が 何故そうなるのかわかりません。 「X=x-1,Y=y-1,Z=z-1とおく」のは、 自然数を表すためかな?とも思ったのですが・・・。 宜しくお願いします。

  • 等式を満たす最小の自然数の組

    大学の受験勉強をしているのですが考え方がさっぱり分からずお手上げ状態です。勝手ながらここで質問させていただきます。 【問】 4x+7y=2007を満たす自然数x,yの組のうち、 絶対値の差が最小となるx,yの組を次の2つの解法で求めよ。 (1)単純な置換による解法 (2)図形的処理を用いた解法 数日間考えたのですが何から手をつければいいのか全く分からないという状況です。 お手を貸していただければ幸いです。 どうか、よろしくお願いいたします。

  • 自然数

    問題1 連続する4つの整数の和が9978になるとき、2番目に大きい数と4番目に大きい数の合計を求めなさい。 答え 4988 問題2 ある3けたの自然数Aを17で割ると、商と余りが等しい数になりました。このとき最も大きい数の合計を求めなさい 答え -69    式と説明お願いいたします。これは、中学くらいの問題ですか?